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This paper studies how firm heterogeneity in automation adoption shapes wage inequality. I

develop a model where heterogenous firms choose the automation level of their task-based produc-

tion technology, compete monopolistically and have wage-setting power, and workers differ by skill

level. The model highlights that heterogeneous automation levels generate wage dispersion across

firms, even for workers with same skills. Using a model-based identification strategy to isolate au-

tomation effects from unobserved confounders, I quantify the contribution of dispersion in firm-level

automation levels to wage inequality. Using French manufacturing data linking firm-level automa-

tion investments with administrative employer-employee records, I find that high-skill workers at

automating firms experience on average wage gains of 7% relative to their counterparts at non-

automating and 5% for low-skill workers, suggesting that firm-level automation benefits, in relative

terms, also replaceable workers. This finding highlights that automation creates wage inequality

not just by rewarding certain skills over others – the well-documented between-skill channel – but

also by creating winner and loser firms – this novel between-firm channel.
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1 Introduction

In the last decades, a wealth of new technologies have been deployed to automate the production

of goods and services. Industrial robots now handle welding and assembly in manufacturing plants,

automated teller machines (ATMs) dispense cash once handed out by bank tellers, and artificial

intelligence processes information and makes judgments that previously required human reasoning.

This wave of automation has substantially contributed to the growth that developed economies

have experienced since World War II (Acemoglu and Restrepo, 2022). However, the benefits of this

technological transformation have not accrued equally across workers. A large empirical evidence

documents that high-skill workers, those performing cognitive tasks, have ripped most of the gains

from automation , while low-skill workers in routine occupations have experienced stagnant or

declining wages (Autor et al., 2003; Acemoglu and Autor, 2011). While research has established

that differences in skills are crucial to understanding automation’s distributional consequences, it

has largely overlooked the role played by firms. In fact, automating technologies concentrate among

a subset of firms – the largest and most productive ones in each sector (Acemoglu et al., 2020; Koch

et al., 2021) – suggesting that workers, even if they have the same skills, are more or less exposed

to automation depending on whether they work at a firm that adopts automating technologies or

not.

In this paper, I study the role of firms in shaping the impact of automation on wage inequality.

More specifically, I develop a theoretical framework linking firm-level automation decisions to wage

dispersion and empirically quantify this relationship. The theoretical model has a two-fold purpose.

First, it pins down the key economic forces that drive wage differences across workers at automating

and non-automating firms. Secondly, based on these insights, it provides a strategy to identify

the effect of firm-level automation on wages when unobserved confounders simultaneously drive

automation and wages. Guided by this identification strategy, I estimate a set of difference-in-

differences regressions comparing the relevant economic outcomes between automating and non-

automating firms. To this end, I use exceptionally detailed data on automation investments in

French manufacturing spanning 17 years, that I link with wage information from administrative

employer-employee records. I find that at automating firms both high- and low-skill workers gain

relative to their counterparts at non-automating firms (+7% and +5%, respectively), underscoring

that automation’s benefits accrue primarily to workers at adopting firms. Finally, I show how to

use these estimates to quantify the contribution of firm-level automation to wage inequality and,

importantly, compare its contribution to between-firm wage dispersion versus between-skill wage

dispersion.

The model incorporates heterogeneous firms, monopolistic competition, and firm-level wage-

setting power into a task-based production framework. First, I firms operate a task-based pro-
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duction technology à la Acemoglu-Restrepo combining capital, low-skill labor, and high-skill labor

to perform a continuum of tasks. Crucially, automation involves replacing low-skill workers with

capital in the production of a given task, while high-skill workers are not directly displaced. This

structure captures the reality of automation in the manufacturing context, which is my empirical

setting: industrial robots replace assembly line workers performing routine manual tasks, but do

not substitute for engineers who design production processes or managers who coordinate opera-

tions. Second, firms differ in their total factor productivity, which creates endogenous variation in

automation adoption. More productive firms find it more profitable to automate additional tasks

because they can spread the fixed costs of automation over larger production volumes. This gener-

ates the empirically-observed pattern where automation technologies concentrate among industry

leaders. Third, monopolistic competition in product markets ensures that when firms automate and

reduce costs, they gain market share at the expense of competitors. This business-stealing effect

is essential for allowing for negative spillovers on workers at non-automating firms, as observed in

the data (Aghion et al., 2025a). Fourth, firms possess wage-setting power arising from firm-specific

amenities that make workers imperfectly mobile across employers. Without such frictions, perfect

labor mobility would equalize wages across firms, eliminating any differential effects of automation.

The model delivers three key main insights. Firstly, larger firms automate more tasks. This is

because the benefit of automating an additional task consists, in essence, in paying a fixed cost to

reduce the unit cost of production. Therefore larger firms enjoy larger total cost savings as they

spread the per-unit cost savings over a larger output. This finding highlights that any unobserved

shock that increases firm size, such as positive demand or productivity shocks, also incentivizes firms

to automate more tasks, hence confounding the relationship between automation and wages. In the

absence of random variation in automation decisions across firms, this challenges the identification

of automation’s effect on wages, and so on wage inequality. Secondly, wage differences between

workers at automating and non-automating firms can be characterized in terms of two effects: a

negative displacement effect and a positive scale effect. When a firm increases its automation level,

it replaces the low-skill workers carrying-out the marginal task with capital. This is the negative

displacement effect of automation and it is faced by low-skill workers only. However, automation

also reduces production costs, allowing the firm to lower prices, expand output, and increase labor

demand across all skill groups. This is the positive scale effect of automation. Hence, according

to the model, high-skill workers at automating firms gain relative to their counterparts at non-

automating firms as they experience a positive scale effect. Instead, low-skill workers experience

both a positive scale effect and a negative displacement effect, leaving the net effect ambiguous. This

result questions the commonly held view that automation necessarily harms replaceable workers

at adopting firms: if the scale effect is sufficiently strong, low-skill workers at automating firms

may actually benefit despite losing some tasks to machines. Importantly, I show that these two
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effects are governed by two key elasticities: the elasticity to the firm’s automation level of the task-

share of low-skill workers and of capital. These elasticities capture the extent to which a marginal

increase in the automation level impacts the (productivity-weighted) share of tasks performed by

these two inputs, and so measure how much production becomes more intensive in capital and less

intensive in low-skill labor. Thirdly, these two elasticities can be identified by comparing relative

prices and quantities of capital, low- and high-skill workers across automating and non-automating

firms. This identification strategy relies on the insight that automation, by making production more

intensive in capital and less intensive in low-skill labor, changes the relative productivities of inputs,

while unobserved productivity or demand shocks shift the marginal (revenue) product of all inputs

proportionally. As a result, relative prices and quantities capture the automation-induced changes

in task-shares, but not these unobserved shocks. The estimates of the task-share elasticities can then

be mapped into the between-firm wage differential of automation using the model’s characterization

and a parsimonious set of parameters (three parameters: the elasticities of substitution across tasks

and across goods, and the labor supply elasticity).

Guided by this identification strategy, I investigate empirically the extent to which firm-level

automation contributes to wage inequality in the context of the French manufacturing sector between

2003 and 2019, which represents an ideal setting for several reasons. First, France offers exceptional

data availability which allows to precisely track firm-level adoption of automating machines and

worker outcomes. Indeed, it is one of the few countries making available, at the same time, customs

records providing detailed information on firm-level expenditures on automating machines, and

administrative linked employer-employee data containing rich information on individual wages and

occupations. This combination enables me to classify workers into skill groups and measure their

wage, as well as computing firm-level employment by skill group and tracking changes in these

outcomes in relation to their firm’s automation decisions. Third, the French manufacturing sector

has experienced significant automation over the past two decades, being the third-largest robot

user in the European Union (IFR, 2020). Lastly, French labor market institutions, including strong

employment protection and collective bargaining, create the wage-setting frictions comparable to

those in the model.

I estimate a set of difference-in-differences type regressions which compare the relative wages and

relative employment of high- to low-skill workers, as well as expenditures in capital per employed

worker, across firms adopting automating machines (i.e. increase their automation level) and non-

adopting ones (i.e. keep their automation level unchanged). I find that automation, on average,

reduces the task-share of low-skill workers by 4% and increases the task-share of capital by 6%.

Using the model’s characterization and values for the three structural parameters, this implies

that high-skill workers at automating firms gain 7% in wages relative to their counterparts at non-

automating firms. This finding is consistent with the model’s prediction that high-skill workers
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benefit from the positive scale effect of automation. More surprisingly, I find that low-skill workers

at automating firms gain 5% in wages relative to their counterparts at non-automating firms. This

suggests that the positive scale effect of automation outweighs the negative displacement effect for

low-skill workers, indicating that even replaceable workers can benefit, at least in relative terms,

from working at automating firms.

These results are robust across multiple specifications. Specifically, the estimates withstand a

variety of controls for market-specific shocks that could potentially be correlated with firm-level

automation. In particular, I include local labor market-specific time trends, industry-specific time

trends and occupation-specific time trends.

Lastly, I provide a methodology combining the estimated wage effects and the model to quantify

the between-firm inequality channel of automation. The exercise consists in decomposing the overall

wage dispersion into between-skill and between-firm components, and compute how much of each

component is explained by firm-level automation. This decomposition is crucial for two reasons.

First, it reveals whether automation’s distributional impact operates primarily through widening

skill premia – a well-documented channel in the existing literature -— or through the novel channel

proposed by this paper which emphasizes wage disparities between automating and non-automating

firms. Second, and related, the realized magnitude of between-firm wage gaps depends critically

on worker mobility: if workers are highly mobile across firms, wage differentials may be quickly

arbitraged away, whereas immobility amplifies them.

Related literature. This paper contributes to two main strands of literature: the theoretical

development of task-based models of automation and the empirical literature on automation’s effects

on individual workers’ earnings. While building on significant advances in both areas, this work

addresses key limitations in existing empirical approaches and extends the theoretical framework to

better capture the effect of automation on wage inequality.

The theoretical foundation for understanding automation’s impact on labor markets has been

substantially advanced by the task-based approach pioneered by Acemoglu and Autor (2011) and

further developed by Acemoglu and Restrepo (2022). This framework models production as requir-

ing the completion of a continuum of tasks, which can be performed by either workers of different

skill types or by capital (automation technology). The key insight is that automation operates at the

extensive margin—substituting capital for labor in tasks that were previously performed exclusively

by workers. As Restrepo (2023) summarizes, the task model captures automation’s dual effects:

a productivity effect that reduces production costs and potentially increases labor demand, and a

displacement effect that directly reduces employment opportunities for workers whose tasks become

automated. This framework provides a more nuanced understanding than traditional models that

treat automation as merely labor-augmenting technological change. Recent theoretical work has
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extended the basic task model to incorporate firm heterogeneity and endogenous automation de-

cisions (Hubmer and Restrepo, 2024). This paper contributes to this theoretical literature by: 1)

studying endogenous automation decisions in a setup with more than one skill type, allowing for

richer interactions between automation and worker heterogeneity, and 2) adding dynamics to analyze

how workers adapt to automation shocks through job transitions, skill upgrading, and occupational

mobility over their entire careers.

Despite the substantial theoretical advances in understanding automation’s effects, there remains

relatively scarce worker-level evidence on how automation affects individual workers’ earnings and

career trajectories. Much of the early empirical work focused on demographic groups (Acemoglu

and Restrepo, 2022) or occupation-level analysis Humlum (2021), which, while informative about

group-level trends, may mask large significant heterogeneity across individual workers. Yet this

heterogeneity is critical for designing targeted labor market policies.

To the best of my knowledge, Bessen et al. (2023) and Acemoglu et al. (2023) are the only two

studies to provide estimates of how automation affects individual worker outcomes. Both exploit

matched employer-employee administrative datasets and implement difference-in-differences event-

study designs. Bessen et al. (2023) use Dutch administrative data to identify "automation events"

as lumpy spikes in firm-level expenditures on automation technologies. They compare workers at

automating firms to those at firms that will automate later, thereby addressing diverging trends

across firm types. They find that incumbent workers at automating firms experience a cumulative

earnings loss of 9% of one year’s wage over five years, driven by increased non-employment—mainly

early retirement—but find no evidence of wage scarring for those who remain employed. Acemoglu

et al. (2023), using Dutch data as well, measure robot adoption via firm-level import records.

They compare outcomes for workers at automating firms and at non-adopting firms in the same

4-digit industry, instrumenting robot adoption with lagged robot adoption in Korea and Taiwan.

They find that robot adoption reduces earnings and employment probabilities for directly-affected

workers (those in routine or replaceable occupations), while other workers benefit. Importantly,

they also find negative effects on workers at competing non-adopting firms, suggesting substantial

industry-level displacement effects.

Crucially, both studies center their analysis on the treated workers within adopting firms, implic-

itly assuming that the primary effects of automation materialize there. By contrast, this paper shifts

the focus to the untreated: workers at non-automating firms. These workers, though not directly

exposed to automation within their own firm, are vulnerable to the indirect competitive pressures

induced by automation elsewhere. I develop a dynamic general equilibrium model of the labor

market in which firms endogenously choose whether to automate tasks and workers can reallocate

across firms and sectors. This framework allows me to re-evaluate the earnings losses associated

with automation, explicitly accounting for the negative spillovers on workers at non-adopting firms.

5



In doing so, I uncover that the most severe distributional consequences of automation fall not on

the treated, but on those left behind.

Outline. The remainder of the paper is organized as follows. Section 2 develops the model of

endogenous automation with heterogeneous firms and workers. Section 3 presents the identification

challenge for estimating automation’s wage effects and develops a model-based strategy to address it.

Section 4 describes the institutional context and data from French manufacturing. Section 6 presents

the empirical results. Section 7 discusses the contribution of automation to wage inequality. Section

8 provides a methodology to quantify the contribution of firm-level automation to wage inequality

and Section 9 concludes.

2 A model of automation with heterogenous workers and firms

The model developed in this section is designed to quantify how automation affects wages across

firms and skill groups while replicating three facts documented in the existing literature that suggest

that heterogeneity in firm-level automation rates can generate wage inequality. First, investments

in automation technologies concentrate among the most productive firms. Second, firms that adopt

these technologies experience significant increases in sales and employment, while their competitors

shrink (Acemoglu et al., 2020; Aghion et al., 2025a; Bonfiglioli et al., 2024), suggesting that au-

tomation exerts large business-stealing effects on non-automating firms. Third, depending on their

skill or tasks in the firm, some workers are more affected than others by automation (Acemoglu and

Restrepo, 2022).

To do so, the model incorporates in a task-based production framework (Acemoglu and Restrepo,

2022) four key ingredients: heterogeneous firms, heterogeneous workers, monopolistic competition

and wage-setting power at the firm level.

First, firms differ in productivity. Because automation is costly, more productive firms automate

more tasks, generating endogenous variation in automation adoption levels. Second, workers are

low- or high-skill. The former ones are more productive at tasks that are highly automatable while

the latter ones excel at tasks that are little automatable. Third, monopolistic competition in the

product market generates demand reallocation: when firms automate and reduce costs, they gain

market share at the expense of non-automating competitors, creating negative spillovers on workers

at these firms even though they are not directly exposed to automation. Finally, firms have some

wage-setting power which arises from firm-specific amenities as modeled in (Card et al., 2018). This

is done to allow wages to be differentially affected by automation at automating and non-automating

firms, even within skill-group.
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2.1 Environment

Workers. A representative household is composed of N = L +H members, of which H are high

skilled and L are low skilled. The household allocates workers across firms and uses their labor

income to consume a composite final good.

Consumption. The household consumes a set of differentiated goods indexed by j = 1, . . . , J ,

aggregated into a CES composite:

Y =

 J∑
j=1

y
σ−1
σ

j

 σ
σ−1

where σ is the elasticity of substitution across varieties. The corresponding price index is

P =

 J∑
j=1

p 1−σ
j

 1
1−σ

which I normalize to 1. Let total household income be E, equal to the sum of labor earnings and

distributed firm profits:

E =
J∑
j=1

(
wLjLj + wHjHj

)
+Π

Utility maximization yields the standard CES demand for each variety j:

(1) yj = p−σj Y, and Y = E

Labor supply. Labor supply decision are modeled as in Card et al. (2018). Each worker is endowed

with one unit of labor. The household allocates its members across firms so as to to maximize their

indirect utility. For workers in skill group S ∈ {L,H}, the indirect utility of working at firm j is

(2) uij = lnwSj + ln aSj + ϵij ,

where wSj is the firm-specific wage paid to individual i, ln aSj is a firm-specific amenity common

to all workers in group S, and ϵij captures idiosyncratic preferences for working at firm j (e.g.,

commuting distance, flexibility). The ϵij are independent draws from a type I Extreme Value

distribution with dispersion parameter ϕ.

Given posted wages, workers are free to work at any firm. Standard discrete-choice arguments

(McFadden, 1977) imply logit choice probabilities:

PSij

(
arg max

k∈{1,...,J}
{uSik} = j

)
=

exp
(

1
ϕ lnwSj + ln aSj

)
∑J

k=1 exp
(

1
ϕ lnwSk + ln aSk

)
= ΛS exp

(
1
ϕ lnwSj + ln aSj

)
,
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where ΛS =
[∑J

k=1 exp
(
1
ϕ lnwSk+ln aSk

)]−1
is the wage index for skill group S which ensures that

the aggregate labor markets clear, and so is common to all firms.

The above choice probabilities lead to the following upward sloping labor supply curve:

(3) Sj = (wSj)
1
ϕ S ΛS aSj

Firms. Each variety j is produced by combining a continuum of tasks x ∈ [0, 1] using a CES

aggregator with elasticity of substitution η (Acemoglu and Restrepo, 2022). For example, producing

a shirt requires completing a set of tasks: designing the garment, cleaning and carding the fibers,

spinning and weaving the fabric, cutting the material, sewing the pieces together, quality inspection,

packaging, and logistics. Each of these tasks can potentially be performed by different combinations

of capital (automated machinery), low-skill workers (machine operators and assembly workers), or

high-skill workers (designers and quality engineers). Firms differ in their total factor productivity

zj . Hence, the technology of firm j is:

yj = zj ·
(∫ 1

0
y(x)

η−1
η dx

) η
η−1

The technology for each task x is given by:

(4) y(x) = ψK(x)K(x) + ψL(x)L(x) + ψH(x)H(x)

where K(x), L(x) and H(x) are the amounts of capital, low-skill and high-skill workers used in

task x, respectively, and ψK(x), ψL(x) and ψH(x) are the task-specific productivity of capital, low-

skill and high-skill workers, respectively. So, inputs are perfect substitutes at the task level. This

captures in a stark way that machines can perfectly substitute for workers at narrowly defined tasks.

For example, a welding robot is a perfect substitute for workers in the task of welding car parts.

A software system is a perfect substitute for humans in the task of receiving and dispatching sales

orders.

Following Acemoglu and Restrepo (2022), I assume that each input has a strict comparative

advantage in some task. More specifically, I assume that:

(5)
ψK(x)

ψL(x)
is decreasing in x, and

ψL(x)

ψH(x)
is decreasing in x.

meaning that capital is most productive at lower-indexed tasks, i.e. tasks close to 0, high-skill

workers are most productive at higher-indexed tasks, i.e. tasks close to 1, and low-skill workers are

most productive in intermediate tasks.

Firms choose the quantity of inputs to employ across tasks. To use capital in a task, the firm has

to pay a fixed cost b. Instead, using low- or high-skill workers requires no fixed cost to be paid. An
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interpretation for this assumption is that using capital requires some installment cost. In order to

perform a particular task at a particular plant, it is essential that capital be specially designed for

the task and be custom made1. Under the assumptions that inputs are perfect substitutes at the

task-level (equation (4)), that relative productivities are monotonic over the task interval (equation

(5)), and that firms face a strictly positive supply of each skill type at any positive wage (equation

(3)), it follows (see Appendix X) that the equilibrium allocation of inputs across tasks is:

y(x) =


ψK(x)K(x) if 0 < x ≤ α1

ψL(x)L(x) if α1 < x ≤ α2

ψH(x)H(x) if α2 < x ≤ 1

where 0 ≤ α1 < α2 < 1. This means that, in equilibrium, the firm uses capital in tasks from 0 to

α1, low-skill workers from α1 to α2, and high-skill workers from α2 to 1, where the cutoffs α1 and

α2 are endogenously determined by the firm. I call α1 a firm’s automation level, as it determines

the share of tasks performed by capital, and so the extent to which production is automated.

Given such an assignment of inputs to tasks, the technology of firm j can be written as:

yj = zj

[
ΓK(α1j)

1
ηK

η−1
η

j + ΓL(α1j , α2j)
1
ηL

η−1
η

j + ΓH(α2j)
1
ηH

η−1
η

j

] η
η−1

(6)

where ΓK(α1j) =
∫ α1j

0 ψK(x)η−1dx, ΓL(α1j , α2j) =
∫ α2j

α1j
ψL(x)

η−1dx, and ΓH(α2j) =
∫ 1
α2j

ψH(x)
η−1dx

are inputs’ task-shares, i.e. the share of tasks carried out by the input weighted by its task-specific

productivity. Technology (8) resembles a CES production function but with endogenous shares

ΓK ,ΓL, ΓH which determine the intensity with which each factor is used in production. This ex-

tends the framework in Hubmer and Restrepo (2024) to multiple skill types, allowing me to study

how endogenous automation decisions shape wage differences across workers with varying skill lev-

els.2.

Firms maximize profits given the production technology, the demand for their variety and the

supply of low- and high-skilled workers, the fixed cost of automation b and the rental rate of capital

r. They choose the level of output yj , their price pj , the demands for capital, low- and high-skilled

labor Kj , Lj and Hj , and importantly, the cutoffs α1j and α2j that determine the allocation of
1While one can think of examples of capital goods that can be obtained "off the shelf" that may not incorporate

much firm-specific design (e.g., a forklift truck), most capital goods—such as assembly lines or dedicated machinery,

—require firm-specific design investments and customization for the particular production environment. Indeed,

setup costs associated with the use of industrial robots can add up to four times the cost of the actual equipment

(see, for example, Leigh and Kraft (2018))
2Acemoglu and Restrepo (2022) also features a task-based technology employing workers with multiple skill types.

However, their setting does not model automation decisions, and so cannot be readily used for the purpose of this

study.
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inputs across tasks. Formally, firm j chooses C = {pj , yj , Lj , Hj ,Kj , α1j , α2j} to solve:

(7) max
C

pj yj − wLjLj − wHjHj − rKj − bα1j

subject to:

yj = zj

[
ΓK(α1j)

1
ηK

η−1
η

j + ΓL(α1j , α2j)
1
ηL

η−1
η

j + ΓH(α2j)
1
ηH

η−1
η

j

] η
η−1

(8)

pj =
(yj
Y

)− 1
σ(9)

wLj =

(
Lj

L̄ΛLaLj

)ϕ
(10)

wHj =

(
Hj

H̄ΛHaHj

)ϕ
(11)

taking as given the rental rate of capital r, the total supply of low- and high-skill workers L̄ and H̄,

aggregate output Y , and its own amenity levels aLj and aHj .

Equilibrium. The definition of the market equilibrium can be found in Appendix A.1.

Taking stock. The technology resembles a CES production function but with endogenous in-

come shares ΓK(α1), ΓL(α1, α2) and ΓH(α2) as the firm chooses the share of tasks performed by

capital, low- and high-skill workers by setting α1 and α2. This feature is crucial to allow for capital

productivity improvements to have negative effects on the wage levels, as shown by Acemoglu and

Restrepo (2022) and in section 2.3 in the context of this model. Indeed, as firms automate more

tasks, the firm uses less intensively low-skill labor and so its income share contracts, which, ceteris

paribus, leads to decreases in the wage level of low-skill workers. This holds even if the elasticity

of substitution between capital and low-skill labor is larger than one. The production technologies

posited by alternative, well-known frameworks to analyse the effects of technological change, like

those in the literatures on skill-biased technological change (Katz and Murphy, 1992) and capital-

skill complementarity (Krusell et al., 2000) also generate increases in relative wages across skill

groups – the skill-premium – as a result of technological change. However, they cannot generate

drops in the level of wages for any group, because inputs are q-complements and, as such, any

form of technological change that increases the productivity of a given factor (the productivity of

high-skill labor in the SBTC literature; the productivity of capital in the capital-skill bias litera-

ture) increases the price level of any of the factors. This is a big limitation for studying the impact

of automation on wage levels between skill groups and firms, as in the last four decades we have

observed stagnant or decreasing wages for low-skill workers (Acemoglu and Autor, 2011). For a

more in-depth analysis of the differences between these technologies and the task-based framework,

see Acemoglu and Restrepo (2022).
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In this framework, low-skill and high-skill workers differ fundamentally in their comparative ad-

vantage across the task space. Low-skill workers have a comparative advantage in tasks of intermedi-

ate complexity—more complex than the simplest tasks but less complex than the most sophisticated

ones. Importantly, these intermediate-complexity tasks are more similar to the tasks where capital

has comparative advantage than are the high-complexity tasks performed by high-skill workers. For-

mally, this is captured by the assumption that capital productivity ψK(x) is highest for low-indexed

(simple) tasks, low-skill labor productivity ψL(x) peaks at intermediate-indexed tasks, and high-skill

labor productivity ψH(x) is highest for high-indexed (complex) tasks. To foster intuition consider

the following illustrative example: in automobile manufacturing, industrial robots excel at simple,

repetitive tasks such as welding and painting; production line workers have comparative advantage

in moderately complex tasks such as assembly and quality inspection that require some judgment

and dexterity; while engineers specialize in highly complex tasks such as design and process opti-

mization. When the productivity of industrial robots increases, for instance through improvements

in precision and programming, it becomes profitable to substitute capital for low-skill workers in

the tasks where their comparative advantages are closest. This comparative advantage structure

has a direct implication for elasticities of substitution: the elasticity of substitution between capital

and low-skill labor, which I denote ηKL, exceeds the elasticity between capital and high-skill labor,

ηKH . Indeed, the elascity of subsitution, η, is amplified by the displacement of low-skill labor with

capital induceed by increased automation following capital productivity improvements:

ηKL = η +
∂ ln ΓK(α1)/Γ

L(α1, α2)

∂ lnα1
d lnα1j ≥ η

Instead, the elasticity of substitution of high-skill labor and capital is not affected by capital pro-

ductivity and so it is equal to η:

ηKH = η

Consequently, automation technologies that increase capital productivity increase the skill-premium.

2.2 Optimal automation decisions

The economic decision of firms that is key to understand the impact of automation on wages is

the choice of the threshold α1 the fraction of tasks performed by capital. To spell-out more clearly

the trade-off the firm faces, I will work with the minimization problem which is dual to the profit

maximization problem given by equations (7) to (11).

The firm chooses the automation level α1 that minimizes total costs given optimal input choices

of capital, low- and high-skill labor.

11



min
α1j

bα1j +
c(α1j , α2j)

zj
yj

s.t. c(α1j , α2j) =[
r1−ηΓK(α1j) + (wLj(1 + ϕ))1−ηΓL(α1j , α2j) + (wHj(1 + ϕ))1−ηΓH(α2j)

] 1
1−η(12)

where c(α1j , α2j) is the unit cost of a firm with productivity zj = 1 given optimal input choices

(see Appendix A.5). This resembles a CES cost function, but with endogenous shares ΓK(α1j),

ΓL(α1j , α2j) and ΓH(α2j). More specifically, by Shepard’s lemma, the income share of capital,

i.e. the elasticity of output to capital, and the income shares of low- and high-skill labor, i.e. the

elasticity of output to low- and high-skill labor, are respectively:

εKj =

(
r

c(α1j , α2j)

)1−η
ΓK(α1j), εLj =

(
(wLj(1 + ϕ))

c(α1j , α2j)

)1−η
ΓL(α1j , α2j)

εHj =

(
(wHj(1 + ϕ))

c(α1j , α2j)

)1−η
ΓH(α2j)

This shows that by investing in the automation level α1j , firm j is in control of the capital-intensity

of production as well as that of low-skill labor.

The optimal automation level α∗
1j equates the marginal cost and the marginal benefit of automa-

tion, where the benefits are given by the cost savings. The firm’s first-order condition is:

(13) −∂c(α1j , α2j)/zj
∂α1j

· yj = b

where

(14) −∂c(α1j , α2j)

∂α1j
=
[ (wLj(1 + ϕ)

ψL(α1j)

)1−η

︸ ︷︷ ︸
marginal cost of low-skill
labor at marginal task

−
(

r

ψK(α1j)

)1−η

︸ ︷︷ ︸
marginal cost of capital

at marginal task

]
· c(α1j , α2j)

η · 1

1− η︸ ︷︷ ︸
substitutability
between tasks

The left-hand side of equation (13) is the marginal cost of automation and right-hand side is the

marginal benefit, which consist in the reduction in total costs induced by a marginal increase in α1.

Indeed, as firms automate they replace more expensive low-skill labor with cheaper capital, which

reduces the unit cost of production, as captured by the term in square brackets, which measures the

difference between the cost of producing the marginal task with low-skill labor and with capital.

Equation (13) makes clear that firms face a trade-off between the cost savings from automation,

which consists in replacing low-skill workers with capital, and the cost of automation. If automation

was for free, then the firms would choose the automation level that minimizes the unit cost of

production c(α1j ,α2j)
zj

. They would then automate until the task where the cost of capital and the

12



cost of low-skill labor are equal, i.e. α1j would be such that wLj(1+ϕ)
ψL(α1j)

= r
ψK(α1j)

. However, since

automation is costly, the firm will choose a lower level of α1.

From equation (13), importantly, we see that, when automation is costly, the marginal benefit of

automation scales with the size of the firm and so with firm productivity zj . That is because at

larger firms the unit cost reduction of automation is spread over a larger amount of units produced

and so leads to larger cost-savings.

Proposition 2.1. The optimal automation level α∗
1j is increasing in firm productivity zj.

The proof can be found in Appendix A.5.

The intuition is as follows. A firm that automates an additional task, in essence, is paying a

fixed cost to reduce its unit costs. This is more beneficial for firms producing at a larger scale as

the unit cost savings are spread over a larger amount of units, hence generating larger total cost

savings. Since more productive firms have larger scale of production, they automate more tasks.

In addition, note that, in my setting firms can choose the wages they pay. Since more productive

firms have a higher marginal product of labor, they pay higher wages to low-skill workers, ceteris

paribus. This makes it even more profitable for them to substitute low-skill labor with capital, as

the cost difference between the two inputs at the margin is larger.

This result implies that identifying the effect of automation on wages is challenging as unobserv-

able shocks to firm-level productivity confound the effect of automation. This point is outlined

more in depth in section 3.1, and in section 3.2 I propose a solution.

For completeness, I characterize the optimal allocation of high-skill labor across tasks. Contrary

to the allocation of capital, there is no cost of allocating labor across tasks, and so the optimal level

of α2j minimizes unit costs c(α1j ,α2j)
zj

. It is then such that:

(15)
wLj

ψL(α2j)
=

wHj
ψH(α2j)

2.3 Heterogenous wage effects of automation across skill groups and firms

In this section I show what are the key economic forces that drive wage differentials at firms

automating further their production process – i.e. increasing their automation level α1 – relative to

firms keeping constant.

Such a wage differential can be characterized as the semi-elasticity of wages with respect to the

automation level α1j , which measure the percentage change in wages following a marginal increase in

the automation level. Indeed, this semi-elasticity captures all the information needed to quantify the

wage differential as workers at a non-adopting firm are not affected by an increase in the automation

level at its rival other than through changes in the aggregate price level P which are common to

both adopting and non-adopting firms and so are netted out.
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Proposition 2.2. Assuming that ψ′
H(α2ℓ)

ψH(α2ℓ)
− ψ′

L(α2ℓ)

ψL(α2ℓ)
→ ∞ for any firm ℓ, the wage differential, in

equilibrium, between a firm j with a positive change in the automation level (dα1j > 0) and j′ with

constant automation level (dα1j = 0) is given, for low-skill workers, by:

d lnwLj − d lnwLj′ =

[
ϕη

ϕη + 1
·
∂ ln ΓLj(α1j , α2j)

∂α1j︸ ︷︷ ︸
<0

Displacement Effect

+
ϕ(σ − η)

ϕη + 1
·
(
−∂ ln c(α1j , α2j)

∂α1j

)
︸ ︷︷ ︸

>0
Scale Effect

]
dα1j(16)

and for high-skill workers is:

d lnwHj − d lnwHj′ =

[
ϕ(σ − η)

ϕη + 1
·
(
−∂ ln c(α1j , α2j)

∂α1j

)
︸ ︷︷ ︸

>0
Scale Effect

]
dα1j(17)

where:

∂ ln c(α1j , α2j)

∂α1j
=

1

1− η
·

(
sLj · ∂ ln Γ

L(α1j , α2j)

∂α1j︸ ︷︷ ︸
< 0

Reduction
in the Task-Share
of Low-skill Labor

+ sKj · ∂ ln Γ
K(α1j)

∂α1j︸ ︷︷ ︸
> 0

Increase
in the Task-Share

of Capital

)
< 0(18)

with sLj =
wLjLj

yjc(α1j ,α2j)/zj
and sKj =

rKj

yjc(α1j ,α2j)/zj
are, respectively, the share of labor in total costs

(net of automation costs) and the share of capital in total costs (net of automation costs) at firm j.

The proof can be found in Appendix A.3.

Equation (16) shows that, relative to their peers at non-adopting firms, the wages of low-skill

workers at adopting firms experience two opposing effects: a negative displacement effect and a

positive scale effect. The displacement effect captures the reduction in the marginal product of

low-skill workers as some of the tasks they were performing are now assigned to capital, and so the

overall production relies less on them. The strength of this effect is given by the reduction in the

task-share of low-skill workers caused by a marginal increase in the automation level. In addition,

this negative effect is amplified by the elasticitiy of subsitution η. Indeed, for a given reduction in

the task share of low-skill workers, the easier is for the firm to substitute across inputs, the more

it replaces low-skill workers with capital. Similarly, the more elastic is labor supply, i.e. the higher

is ϕ, the larger the drop in the wages of low-skill workers following the reduction in their demand

caused by an increase in the automation level.

The scale effect, instead, captures the increase in the marginal product of low-skill workers coming

from the increase in output that follows the extra automation. Indeed, firms replacing low-skill

workers with capital save on production costs, set lower prices and so experience increases in demand

for their good, which raises the marginal product of workers across all skill groups. Equation (18)

shows that the percentage change in the per unit-cost savings generated by a marginal increase in

14



the automation level are given by the weighted sum of the elasticities of the task-share all inputs,

where the weights are given by their respective shares in total costs. Since the task-share of high-

skill workers is unaffected by increases in the automation level, the cost-savings are proportional

to the productivity gain of performing the marginal task with capital rather than with low-skill

workers, which is given by the increase in the marginal product of capital net of the reduction

in the the marginal product of low-skill workers, accounting for the relative importance of these

inputs in production as captured by their cost-shares.3 The more substitutable capital and low-skill

labor are—that is, the higher the elasticity of substitution η—the greater the cost savings from

automation, since the firm can more readily exploit the rise in the relative productivity of capital

by substituting it for low-skill labor. As for the displacement effect, we see from equation (16) that

the scale effect is amplified as labor supply is more elastic. In addition, the more subsitutable are

goods —the higher is σ— the larger is the wage effect of automation. This is because the reduction

in the unit cost, and so in the price of the automating firms relative to its competitors, translates

into a larger increase in demand and so in the marginal product of all inputs.

For high-skill workers, instead, equation (17) shows that only the scale effect is at play. Indeed,

since high-skill workers do not perform any of the tasks that are automated, their marginal product

is not directly affected by increases in the automation level. However, as for low-skill workers,

high-skill workers at automating firms benefit from the increase in output that follows automation,

which raises their marginal product.

From (16) and (17) note that as ϕ tends to 0 automation at one firm leads to no wage differential

between the workers at that firm and those at a non-automating one. This is because, in such an

instance, workers are indifferent across firms and so perfectly mobile. As a result, labor reallocates

across producers until marginal products, and thus wages, are equalized everywhere. Therefore,

some departure from perfect competition is necessary for automation to create wage differences

across firms. In this model, such frictions are introduced via firm-specific amenities, which generate

monopsonistic power as in Card et al. (2018).

Lastly, and most importantly, equations (16) and (17) show that, for given parameters governing

the elasticity of labor supply ϕ, the elasticity of substitution across goods σ, and across tasks η

as well as firm-level cost-shares (sLj , sKj), all is needed to quantify the wage effects of automation

at automating relative to non-automating firms are two semi-elasticities: the semi-elasticity of the
3Cost savings arise from the productivity gain of performing the marginal task with capital rather than with low-

skill labor. Yet this local change propagates to infra-marginal tasks: by shifting the cutoff between L- and K-tasks,

automation changes the overall productivity of capital and low-skill labor in the aggregate production function. The

resulting reduction in unit costs therefore depends not only on the size of the marginal productivity gain, but also on

how much the firm relies on each input—captured by their respective cost shares. A 1% productivity improvement

in capital generates much larger cost savings when capital represents 50% of total costs than when it represents only

5%.
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task-share of low-skill workers and of capital to the automation level. In the following section I show

how to identify these semi-elasticities from observational data, without requiring random variation

in automation levels, and so overcome the identication challenge posed by unobserved confounders.

3 Identifying the wage effects of automation

In this section I first outline the main identification challenge that arises when estimating the wage

effects of automation at automating relative to non-automating firms and then I propose a solution

to overcome it.

3.1 The identification challenge: unobserved firm-level shocks

I start by laying out the identification challenge that arises when estimating the semi-elasticity of

wages to α1j , which captures the partial equilibrium effects of automation.

Identifying the (partial equilibrium) effect of automation on wages empirically is challenging

because both wages and the level of automation depend on the unobservable firm productivity,

zj . Standard comparisons across firms or over time conflate two effects: the direct impact of

automation on wages and selection into automation by more productive firms. More productive

firms both automate more and pay higher wages for reasons unrelated to automation itself. A

naive regression would thus overstate the causal effect by attributing productivity-driven wage

premia to automation. Put differently, comparing wages of low-skilled workers employed at firms

with different automation levels (between-firm variation), or tracking wage changes for low-skilled

workers at a given firm as its automation intensity changes (within-firm variation), would attribute

wage differences to automation when they actually reflect underlying productivity differences.

The simultaneity problem has a formal manifestation in the framework of the model. For the

sake of exposition, suppose one had firm-level data on wages of low- and high-skill workers at firm j

in year t, and that she also observes the automation level (or a proxy, like the share of automating

machines in total costs) of firm j in year t. The empirical counterpart for the semi-elasticity of

wages at automation is given by the following equation:

∆ lnwisjt = β∆α1jt +∆ϵisjt(19)

where lnwisjt are the wages of a worker i that is low-skilled (s = L) or high-skilled (s = H) in

firm j in year t, α1jt is the automation level of firm j in year t, and ϵisjt is the error term. If the

automation level were exogenous, the coefficient β would capture the semi-elasticity of wages to

automation. The corresponding model counterpart to Equation (19) is:

(20) lnwsjt = C + ln gs(α1jt) + ϵsjt
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where C = ϕη
ϕη+1 ln

(
1

1+ϕ
σ−1
σ

)
is a constant, gH(α1jt) =

ϕη
ϕη+1

σ−η
ση ln y∗j (α1jt; ·) is the effect of autor-

mation on wages of high-skill workers, gL(α1jt) =
ϕη
ϕη+1

(
σ−η
ση ln y∗jt(α1jt; ·) + lnΓL(α1jt, α2jt)

)
is the

effect of automation on wages of low-skill workers, and:

ϵsjt =
ϕη

ϕη + 1
ln

(
z

η−1
η

jt Y
1
σ
t Pt (s̄tΛstasjt)

− 1
η

)
(21)

The model makes clear that such a regression is subject to an endogeneity bias because the error

term ϵisjt is correlated with α1jt and wages wisjt through unobserved firm productivity zj .

More specifically, the coefficient β estimated from (19) is biased upwards because firm-level pro-

ductivity zjt positively covaries with α1jt and with wages wisjt. To understand why, consider what

happens when a firm becomes more productive. On one hand, the marginal product of all inputs

goes up and so wages go up. On the other hand, as the firm expands, it becomes more profitable

to increase its automation level, which impacts wages through the scale and displacement effects

described in section 2.3. In a nutshell, the productivity increase inflates the positive scale effect of

automation on wages.

To foster intuition, consider the case of a steel manufacturing plant that discovers a breakthrough

in its smelting process—a new arrangement of furnace temperatures and oxygen injection timing

that significantly improves the yield of high-quality steel from raw iron ore. This process innovation

enables the firm to produce more and better steel from the same inputs, which corresponds to a

positive shock to firm-level productivity zjt in the model. Two simultaneous responses follow. On

one hand, flush with profits and facing surging demand, the management decides to invest heavily

in robotic assembly lines to scale up manufacturing capacity. In the data, we observe α1jt increasing

sharply. On the other hand, the firm expands its workforce to meet the higher production targets

enabled by the superior smelting process. Competition for workers intensifies, and wages rise across

the board. In the data, we observe wisjt increasing for both low-skill and high-skill workers. Now,

an econometrician observing this steel mill sees a positive correlation: automation increased, and

so did wages. Running regression (19) would suggest that automation raises wages. However, the

wage increase primarily reflects the scale effect from the process innovation that made the plant

more productive, not the causal impact of the robotic assembly lines themselves.

3.2 The identification strategy: exploiting changes in relative prices and quan-
tities

In the previous section I have shown that comparing wages across firms with different automation

levels in a regression like (19) gives an upward-biased estimate of the impact of automation on wage

differentials across firms because of unobserved confounders. In this section I present a strategy to

identify the causal impact of automation on wage differentials across firms.
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The key insight that this strategy exploits is that, while being correlated, unobserved firm-level

shocks zj and choices on automation levels α1j have different implications for the relative prices

and quantities of inputs4. Indeed, shocks to productivity affect equally the marginal product of all

factors while, ceteris paribus, additional automation makes capital more productive, low-skill labor

less productive, and does not affect the productivity of high-skill labor. This differential impact

occurs because automation consists in replacing low-skill labor with capital at specific tasks, and

so fundamentally it is making the production technology more capital-intensive and less intensive

in low-skill labor. As a result, shocks to productivity zj do not affect relative prices and quantities

while increases in the automation level α1j do so, instead. As a result, changes in relative prices

and quantities isolate the impact of automation on the (relative) productivity of inputs. This can

be seen more formally in the expressions below, which characterize the changes in the relative price

of low- and high-skill labor – the skill-premium – and in their relative quantities – the skill-ratio –

for a given firm j across t− 1 and t:

∆ ln
wHjt
wLjt︸ ︷︷ ︸

Change in
skill premium

=
ηϕ

1 + ηϕ
∆ ln

ΓH(α2jt)

ΓL(α1jt, α2jt)︸ ︷︷ ︸
Change in

relative task-shares

− ϕ

1 + ηϕ
∆ ln

HtΛHt
LtΛLt︸ ︷︷ ︸

Change in
relative

labor supply

− ϕ

1 + ηϕ
∆ ln

aHjt
aLjt︸ ︷︷ ︸

Change in
relative

amenities

(22)

∆ ln
Hjt

Ljt︸ ︷︷ ︸
Change in
skill ratio

=
η

1 + ηϕ
∆ ln

ΓH(α2jt)

ΓL(α1jt, α2jt)︸ ︷︷ ︸
Change in

relative task-shares

+
ηϕ

1 + ηϕ
∆ ln

HtΛHt
LtΛLt︸ ︷︷ ︸

Change in
relative

labor supply

+
ηϕ

1 + ηϕ
∆ ln

aHjt
aLjt︸ ︷︷ ︸

Change in
relative

amenities

(23)

I refer the reader to appendix A.4 for the derivation of these equations.

Equations (22) and (23) show that changes in the skill-premium and in the skill-ratio can be

decomposed into three terms: changes in the relative task-share, changes in aggregate-level relative

labor supply, and changes in firm-level relative amenities. If high-skill workers are used more

intensely in production relative to low-skill workers – i.e. the relative task-share increases – then

firms demand relatively more high-skill workers, pushing up the skill-premium and the skill-ratio. If

the relative supply of high-skill to low-skill workers increases, the skill-premium decreases to absorb

the rise in the relative supply while the skill-ratio goes up. Similarly, if the firm becomes relatively

more attractive to high-skill workers because relative amenities of high-skill to low-skill workers

increase, then again the skill-premium decreases while the skill-ratio increases. Hence, as previously

stated, it can be seen that changes in relative prices and quantities isolate the impact of automation

on the (relative) productivity of inputs from that of unobserved firm-level productivity shocks.

Assuming that high-skill workers are infinitely more productive than low-skill workers at the

marginal task relative, firms do not adjust the allocaiton of their current task allocation across
4This identification strategy is similar in spirit to the one employed by Lindner et al. (2022)
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low- and high-skill workers. In such an instance, changes in the skill-premium and in the skill-ratio

at adopting relative to non-adopting firms are informative about the impact of adoption on the

task-share of low-skill labor, ΓL(α1jt, α2jt).

Although comparing relative prices and quantities across firms with different automation levels

helps isolate the impact of adoption on the productivity of inputs from that of unobserved firm-level

productivity shocks (and from changes in aggregate-level relative labor supply), equations (22) and

(23) show that these comparisons capture the effect of changes in firm-level relative amenities, too.

For example, a firm that adopts autonomous mobile robots to transport materials around its factory

improves workplace safety conditions, making logistic positions more attractive to low-skill workers

relative to comparable jobs at non-adopting firms. As a result, we would not be able to tell whether

the increase in the skill-premium was driven by the adoption of these type of robots or by an increase

in the relative amenities for the low-skill workers. To isolate the effect of adoption on the task-shares

from that of changes in relative amenities, it is instructive to note that these changes are different

in nature. Indeed, increases in automation levels act as a shifter to the relative demand of factors,

pushing relative prices and quantities in the same direction, while changes in relative amenities shift

the relative supply of factors, hence pushing them in opposite directions. Exploiting this insight,

we can isolate the effect of the adoption on the task-share of low-skill workers by summing up the

extra skill premium paid at adopting firms to the additional skill ratio there.

Define the following operator: ∆A-Nyt ≡ ∆yjt
Auto − ∆yjt

Non
, which measures the difference

in the average change of variable y between automating and non-automating firms. Specifically,

∆yjt
g
= 1

Ng

∑
j∈g
(
yjt− yj,t−1

)
, g ∈ {Auto, Non} denotes the average change in y between periods

t− 1 and t for firms in group g. Using this operator, I can now state the identification result of the

paper.

Proposition 3.1. Assuming that ψ′
H(α2ℓt)

ψH(α2ℓt)
− ψ′

L(α2ℓt)

ψL(α2ℓt)
→ ∞ for any ℓ, the percentage change in the

task-share of low skill workers can be identified as:

(24)
∂ ln ΓL(α1jt, α2jt)

∂α1jt
·∆α1jt︸ ︷︷ ︸

Effect of Automation on
Task-Share of Low-Skill Labor

= − ∆A-N ln
wHjt
wLjt︸ ︷︷ ︸

Change in
Skill Premium at

Auto vs. Non-Auto

− 1

η
·∆A-N ln

Hjt

Ljt︸ ︷︷ ︸
Change in
Skill Ratio

Auto vs. Non-Auto

The percentage change in the task-share of capital can be identified as:

(25)
∂ ln ΓK(α1jt)

∂α1jt
·∆α1jt︸ ︷︷ ︸

Effect of Automation on
Task-Share of Capital

=
1

η
·∆A-N ln

Kjt

Hjt︸ ︷︷ ︸
Change in Stock of K
per H-Skill Worker

at Auto vs. Non-Auto

+ϕη ·
[

∆A-N lnHjt︸ ︷︷ ︸
Change in

H-Skill Employment
at Auto vs. Non-Auto

− 1
ϕ · ∆A-N lnwHjt︸ ︷︷ ︸

Change in
H-Skill Wage at

Auto vs. Non-Auto

]

The intuition behind equation (24) is as follows. The higher the skill premium increase at adopting
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firms relative to non-adopting firms, the more automation has reduced the task-share of low-skill

workers. This occurs because automation displaces low-skill workers from their tasks, reducing

their relative productivity and thus their relative wage. Similarly, the higher the skill ratio in-

crease at adopting firms relative to non-adopting firms, the more the task-share of low-skill workers

has decreased, as firms substitute away from low-skill labor toward high-skill labor in response to

automation. The factor 1
η in front of the skill ratio change reflects the elasticity of substitution be-

tween tasks in production—when tasks are more substitutable (higher η), a given change in relative

quantities corresponds to a smaller change in relative task productivity, requiring this adjustment

factor to correctly measure the underlying task-share change.

By the same logic, equation (25) recovers the change in capital’s task-share: a higher high-skill

wage at adopters (relative to non-adopters) together with an increase in the high-skill-to-capital

ratio implies that ΓK rises. There is no firm-specific capital price term because the rental rate of

capital is common across firms at a point in time; what varies at the firm level are wages (due, inter

alia, to amenities). I refer the reader to appendix A.4 for the derivation of equation (25).

4 Data and Institutional Context of French Manufacturing

I study the distributional consequences of automation in the empirical landscape of the French

manufacturing sector over the period 2003-2019. In this section I first describe the institutional

context of France that makes it an ideal setting for this analysis and then I present the data sources

used in the empirical analysis along with summary statistics.

4.1 Institutional Context

France provides an ideal empirical setting to study the distributional consequences of automation

across firms and skill groups for several reasons. First, France offers exceptional data availability

that enables precise measurement of both automation adoption and its effects on workers. The

combination of detailed customs records tracking firm-level imports of automating technologies and

comprehensive matched employer-employee data allows me to trace how automation investments

affect individual workers across different skill groups and firms. For this reason, France has become

one of the preferred settings for recent studies on automation’s labor market effects (Aghion et al.,

2025b, 2023; Acemoglu et al., 2020).

Second, France’s manufacturing sector represents a substantive case study of automation diffusion

in a major advanced economy. Indeed, its manufacturing sector has experienced significant automa-

tion over the past two decades, making it the third-largest robot user in the European Union after

Germany and Italy (IFR, 2020). Moreover, robot adoption in France has accelerated rapidly, with

annual installations growing at an average rate of 18 percent between 2014 and 2019 (IFR, 2020).
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This combination of substantial adoption levels and rapid growth provides sufficient variation to

identify automation’s effects while remaining representative of automation patterns in other large

European manufacturing economies.

4.2 Data and Summary Statistics

The identification strategy described in Section 3.2 compares outcomes across automating and non-

automating firms. To implement it empirically, I combine three data sources that, once linked,

provide a comprehensive view of automation investments and worker- and firm-level outcomes

in French manufacturing between 2003 and 2019. These data sources are: customs data, linked

employer-employee payroll data, and firm-level balance sheet data. In the following I describe each

data source in turn.

Firm-level expenditures in industrial robots

The French customs administration collects data for domestic firms involved in international trans-

actions. This data collection comes from a compulsory form that firms have to fill out when they

import goods. The customs administrations make available to researchers a dataset proving expen-

ditures at the firm-month-year level by 6-digit product code. The coverage is quasi-exhaustive in

that all transactions by firms that in a given year trade goods (imports and exports), across all

product codes, for more than e420,000 are included. From this dataset I can identify firm-level

expenditures in industrial robots (HS-code 847950 ), which are – by definition – machines that auto-

mate the production of manufacturing goods5. Some examples of the tasks performed by industrial

robots include welding and painting cars, assembling electronics, packaging and palletizing goods in

food and logistics industries, and inspecting or testing products in pharmaceuticals and aerospace.

Because this product category includes items that are, unambiguously, automating machines, it

has been widely exploited by the literature to measure firm-level adoption of automating technologies

(Acemoglu et al. (2020), Aghion et al. (2023), Aghion et al. (2025a), Koch et al. (2021) among

others). Hence, I use imports of industrial robots as my measure of for firm-level expenditures in

automating technologies6.
5"Industrial robots classified under HS Code 847950 are automated programmable mechanical devices designed

to perform complex tasks with high precision in manufacturing and processing environments." (WCO, 2022)
6Resorting to import data to measure automation expenditures carries out some measurement error due to the fact

that that I treat firms without imports as non-automating firms while they could purchase automating technologies

from domestic producers or domestic retailers. However, almost all industrial robots - the automating technology I

consider in the empirical analysis - used in France are not actually produced in the country. I verify that results are

robust to this measurement error in a set of robustness checks in Section 6.
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Linked Employer-Employee Data

The French Ministry of Labor provides data containing payroll information at yearly frequency

for the universe of workers employed in France. Because of its rich detail, this dataset has been

extensively used in labor economics research and beyond. In this paper, I draw on it to obtain

precise information on workers’ pay, occupations, firm and industry affiliations, and demographic

characteristics. Unfortunately, this information is available, for each worker identifier, only for the

current and the past year, preventing the construction of long worker-level panel. However, with

information across two consecutive years, I can identify whether the worker is a new entrant, i.e.

she was hired during the year, or not, which is an important information I exploit to control for

changes in the composition of workers that might be contemporanous to automation investments.

Importantly, a firm identifier is provided for each observation so that this dataset can be linked to

the customs records.

Firm-level Balance Sheet Data

Administrative records from the French tax authority provide detailed balance sheet information for

the universe of French firms. I rely on it to obtain three key pieces of information for the empirical

analysis. Firstly, it provides a breakdown of the capital stock by asset type, which allows to

distinguish the stock of industrial equipment from other types of capital stock (e.g., land, buildings,

etc.). Having precise information on the stock of industrial equipment is key to capture the extent

to which automation increases the task share of capital relative to labor, as discussed in section

(3.2). Secondly, I obtain from balance sheet data firm-level control variables, such as value added,

which are relevant to control for trends underlying automation and outcome variables. Thirdly, it

contains information on firms’ cost structure, which I use to compute firm-level shares of low-skill

workers and capital in total costs, which are key to pin down the cost-saving gains of automation

as shown in equation (18).

Summary Statistics

In the empirical analysis I focus on the manufacturing sector, and restrict the sample to firms

with at least 10 full-time employees in each year over the period of analysis (2003-2019) to ensure

that firm-level outcomes are measured with sufficient precision. The sample includes 18,234 unique

manufacturing firms observed over the period 2003-2019, for a total of 11,759,761 worker-year ob-

servations. Table 4.2 provides summary statistics, separately for automating and non-automating

firms. I define automating firms as those with at least one year with positive expenditures in in-

dustrial robots. Overall, 37% of firms in the sample are automating firms. On average, automating

firms are larger and more productive than non-automating ones. In particular, automating firms

have on average 268 employees versus 108 employees at non-automating firms, and value added per
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worker is e66,800 at automating firms versus e54,600 at non-automating ones. Examining automa-

tion expenditures among firms that invest in robots, we observe substantial variation in investment

magnitudes. Firms in the manufacturing sample spend on average e344,100 on industrial robots

when they make positive investments, with considerable heterogeneity as reflected by the large stan-

dard deviation. When scaled by employment, the average investment amounts to e1,400 per worker,

while as a share of existing capital stock, robot expenditures represent approximately 4.2% of the

previous year’s capital stock. This magnitude suggests that robot investments constitute mean-

ingful capital expenditures. Crucially, this substantial heterogeneity in automation expenditures –

whether measured in absolute levels, per worker, or relative to existing capital stock – implies that

workers across the manufacturing sector face vastly different exposures to automation, creating the

variation necessary to study how heterogeneous automation levels affect wage inequality within and

across firms.

All firms Automating Non-automating

Firm Characteristics

Employment 172 268 108

(195.2) (284.7) (132.4)

Value added per worker (thousands e) 60.1 66.8 54.6

(28.5) (31.2) (24.8)

Automation (thousands e)

Expenditures - 344.1 -

(3,035.17)

Expenditures per worker - 1.4 -

(6.09)

Expenditures over t− 1’s Capital Stock - 0.042 -

(1.966)

Unique firms 18,234 6,746 11,488

Worker-year obs 11,759,761 1,807,928 9,951,833

Notes: This table shows the characteristics of automating and non-automating firms. I measure firm-

level automation from purchases of industrial robots as recorded in French customs. Automating firms

are firms with at least one year with positive expenditures in industrial robots. I report average values

of outcomes over the sample period 2003-2019. The table shows the mean of firm-level employment, the

mean of firm-level value added per worker, the mean of firm-level expenditures in industrial robots, the

mean of firm-level expenditures in industrial robots per worker, and the mean of firm-level expenditures

in industrial robots as a fraction of one-year-lagged capital stock. I report the standard deviation of

these variables in parentheses below.
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5 Empirical approach

In this section, I present the regressions that estimate the effect of adoption of automating machines

on the task share of low-skill labor and on the task share of capital and which implement the

identification strategy characterized by equations (24) and (25).

5.1 Estimating the Change in Skill Premium

To estimate the impact of automation on the skill-premium, I start from a Mincer-type wage re-

gression. In particular, our benchmark empirical model is the following:

(26)

lnwageijt = δbhigh-skillijt+ δ
uautomationijt+ δsautomationjt×high-skillijt+γXijt+φj+ ςkt+ εijt

where wageijt is individual i ’s wage at firm j at time t, high-skillijt is a dummy variable for

whether worker i is in high-skilled occupation, and automationjt is an indicator variable taking the

value one if the firm automates in the current or any of the previous two years. The vector Xijt

contains Mincer-type control variables, including gender, age, a dummy variable for whether the

worker is a new entrant to the firm to control for selection effects of automation. In the benchmark

specification I introduce firm fixed effects (φj), and group-specific time effects denoted by ςkt in

the equation above. In the benchmark specification ςkt includes (1-digit) industry-time fixed effects

and (4-digit) occupation group-time effects. By including the interacted occupation group-year

effects I effectively control for occupation-specific wage trends, as well as policy changes that might

affect occupation groups differently, such as changes in the minimum wage. In a more saturated

model, I also include industry-location-year fixed effects, occupation-location-year fixed effects or

industry-occupation-location-year fixed effects.

In the regression above, δs, the coefficient on the interaction between high-skillijt and automationjt,

captures the change in skill premium following technological change.

5.2 Estimating the Change in Skill Ratio

To estimate how technological change is related to subsequent changes in the skill ratio of a firm, I

start out with equation (23). Guided by this equation, I use a difference-in-differences estimation,

where I compare firms that automated at the beginning of the period with non-automating firms in

the same industry with similar initial characteristics. In particular, I follow Caroli and Van Reenen

(2001) and estimate long-difference regressions of the form:

(27) ∆yjt = δHLautomationjt + γ∆Xjt + γyyjt−1 + ςkt + ϵjt

The left-hand side captures changes in outcome yjt (such as share of high-skill workers, high-skill

to low-skill ratio) between year t and t + 6 at firm j. The variable automationjt is the same key
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variable included in the worker regression equation (26), i.e. a dummy variable for whether a firm

automates in the current or previous two years. Following Caroli and Van Reenen (2001), I control

for changes in firm capital and value added, denoted by ∆Xjt. However, our results are robust

to excluding these potentially endogenous conditioning variables. The specification differences out

time invariant firm and labor market characteristics, and I include industry-year fixed effects (ςkt)

to control for industry-level labor supply shocks
(
∆ ln HtΛHt

LtΛLt

)
. Finally, I control for a lagged value

of the outcome variable (yjt−1), to capture initial firm heterogeneity and investigate robustness to

excluding the lagged dependent variable in the regression. Standard errors are clustered at the firm

level. As argued by Caroli and Van Reenen (2001), such a long difference specification is likely to

capture the long-run effects of automation, as opposed to short-run fluctuations in outcomes.

5.3 Estimating the Change in Stock of Capital per High-Skill Worker

To estimate the impact of automation on capital intensity, I follow a specification analogous to (27),

where the outcome variable yjt now measures the expenditures in capital (industrial equipment)

per high-skilled employee. This ratio captures how much firms rely on high-skill labor relative to

their capital stock, providing a direct measure of whether automation leads to capital deepening or

substitution between high-skill workers and machines.

The empirical model takes the form:

(28) ∆yjt = δHKautomationjt + γ∆Xjt + γyyjt−1 + ςkt + ϵjt

As before, the specification differences out time-invariant firm characteristics and includes industry-

year fixed effects to control for sector-specific investment trends and capital price fluctuations. The

coefficient δHK identifies the change in the capital-to-high-skill ratio following automation events,

capturing the extent to which automating firms increase their capital stock relative to their high-

skill employment. According to equation (25), this coefficient—scaled by 1
η—directly identifies the

increase in capital’s task-share induced by automation, since the rental rate of capital is common

across firms and thus absorbed by the industry-year fixed effects.

6 Empirical Results

6.1 Skill Premium

I start the analysis by studying the relationship between automation and the skill premium. Across

specifications (columns 1–4), the estimated coefficients for the interaction term Automation × High-

Skill remain remarkably stable in magnitude and significance once standard worker and firm-level

controls are introduced. The point estimates range between 0.03 and 0.07 log-points, closely mir-

roring the moderate college-premium effects documented in comparable studies of technological
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change. This robustness suggests that automation systematically raises the relative wages of high-

skill workers within adopting firms, independent of model saturation or inclusion of fixed effects.

Table 1: Automation effect on the skill-premium

(1) (2) (3) (4)

Automation 0.011 0.011 0.004 -0.012

(0.032) (0.032) (0.015) (0.014)

Automation × High-Skill 0.056∗ 0.038∗ 0.060∗∗ 0.060∗∗

(0.030) (0.022) (0.024) (0.026)

Individual controls No Yes Yes Yes

Firm FEs No No Yes Yes

Group × Year FEs No No No Yes

Observations 11,759,761 11,759,761 11,759,761 11,759,761

Firms N. 18,234 18,234 18,234 18,234

R2 0.51 0.76 0.91 0.92

Note: This table investigates the change in workers’ (log) wages following firm-level automa-

tion. I measure firm-level automation from purchases of industrial robots recorded in French

customs. I report the estimated coefficients on the automation dummy, δu, and the automation

dummy interacted with whether the individual is in a high-skill occupation, δs, from equation

(26) described in Section 6.1. The "Automation" dummy indicates whether an industrial robot

was imported by the firm in the current year or any previous year. The coefficient of interest is

that of the "Automation x High-Skill" interaction, which shows the extent to which the high-

skill premium changes following automation at the firm. Column (1) shows the estimates when

including only occupation fixed effects and the high-skill dummy as controls. Columns (2)-(4)

also include individual-level controls (gender, age, age squared, a dummy for new entrant).

Columns (3)-(4) add firm fixed effects. Column (4) adds group (occupation and industry) ×
year fixed effects. Standard errors are clustered at the firm level and are reported in parenthe-

ses. Significance levels are: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

At the same time, the coefficient on Automation alone turns slightly negative as additional controls

and fixed effects are added, consistent with a mild decline in low-skill wage growth once composition

and firm heterogeneity are accounted for. Taken together, these patterns indicate that automation

is associated with an internally consistent widening of within-firm wage differentials—an effect

comparable in direction and magnitude to those found for process innovations in Lindner et al.

(2022).

In the light of the identification strategy outlined in Section A.4, such a widening of the wage

premium measures the reduction in the productivity of low-skill labor as more tasks get assigned to
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capital, up to changes in the relative supplies of high- and low-skill workers at the firm which may

also be causing such an widening. To control for this confounding supply-side factors, I analyse how

the skill-ratio at automating firms compares to that of non-automaitng firms.

6.2 Skill Ratio

The regression results presented in Table 5 show that automation events are systematically followed

by a decline in the relative employment of low-skilled workers. Across specifications, the estimated

coefficients on the automation dummy are positive and statistically significant. The result remains

robust when controlling for firm-level changes in value added and capital intensity, confirming

that the change in relative employment is not a mechanical consequence of output expansion or

investment growth. Rather, it reflects a genuine shift in firms’ labor demand away from low-skill

tasks as production processes become more automated.

Table 2: Automation effect on the skill-ratio

(1) (2) (3)

Automation 0.023∗∗∗ 0.020∗ 0.013

(0.009) (0.012) (0.012)

∆ Log VA -0.023∗∗∗ -0.0235∗∗∗

(0.006) (0.006)

Industry × Year FEs Yes Yes Yes

Dependent variable t− 1 No No Yes

Firms N. 3612 3612 3612

Observations 50,478 28,445 28,441

R2 0.05162 0.07376 0.09428

Note: This table shows the relationship between firm-level automation and the subsequent 6-year change

in the firm-level high-skill employment share. I measure firm-level automation from purchases of industrial

robots recorded in French customs. In the table I report the δy coefficient from regression equation (27).

The "Automation" dummy indicates whether an industrial robot was imported by the firm in the current

year or any previous year. The other explanatory variables in columns (2)–(3) are long differences of

log value added. In each regression I include industry-year fixed effects, and in column (3) the lagged

dependent variable is also included. Standard errors are clustered at the firm level and are reported in

parentheses. Significance levels are: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

These patterns are consistent with international evidence on skill-biased technological change. In

particular, Lindner et al. (2022) find that innovation activities in Norway and Hungary led to a two-

to three-percentage-point rise in the college-to-non-college employment ratio over a similar period.
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The similarity in magnitudes suggests that automation and innovation trigger comparable reductions

in the relative use of low-skill labor, even across economies at different stages of technological

development.

Conceptually, these results fit closely with the predictions of the model developed in Section 2

that automation displaces low-skill workers, and with the increase in the high-skill wage premium

documented in the preceding subsection.

6.3 Stock of Capital per High-Skill Worker

The estimates in Table 6 indicate that automation is associated with a large rise in capital stock

per high-skilled employee, pointing to a strong reallocation of tasks toward capital. The estimates

remain statistically significant across all specifications, indicating that the result is not driven by

contemporaneous improvements in firm-level productivity as proxied by changes in value added.

This robustness reinforces the interpretation that the rise in capital intensity is a direct consequence

of automation itself, rather than a by-product of higher output or temporary investment cycles.

Table 3: Automation effect on the Stock of Capital per High-Skill Worker

(1) (2) (3)

Automation 0.441∗∗∗ 0.451∗∗∗ 0.168∗∗

(0.089) (0.090) (0.074)

∆ Log VA -0.115∗∗∗ -0.092∗∗∗

(0.039) (0.033)

Industry × Year FEs Yes Yes Yes

Dependent variable t− 1 No No Yes

Firms N. 3612 3612 3612

Observations 19,041 18,915 18,909

R2 0.08317 0.08407 0.26561

Note: This table shows the relationship between firm-level automation and subsequent 6-year
change in firm-level stock of capital per high-skill worker. I measure firm-level automation from
purchases of industrial robots recorded in French customs. In the table I report the δy coefficient
from regression equation (27). The "Automation" dummy indicates whether an industrial robot
was imported by the firm in the current year or any previous year. The other explanatory variables
in columns (2)–(3) are long differences of log value added. In each regression I include industry-
year fixed effects, and in column (3) the lagged dependent variable is also included. Standard
errors are clustered at the firm level and are reported in parentheses. Significance levels are:
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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To evaluate the overall cost implications of this capital deepening, it is necessary to compare the

magnitude of the increase in capital stock per worker to the corresponding reduction in the task

share of low-skill labor, which will be analyzed in the next section. Only by contrasting these two

adjustments can we assess whether automation ultimately yields net cost savings or whether the

observed rise in capital intensity primarily reflects a reallocation of production tasks away from

low-skill workers toward machines.

7 The Wage Effects of Automation at Adopters Relative to Non-

Adopters

In the previous section, I have shown that as firms buy automating machines they pay a higher skill

premium and employ relatively more high-skill workers. At the same time, they also increase the

amount of capital per high-skill worker. According to the identification strategy outlined in Section

3.2, these changes in relative prices and quantities can be used to back out the two key elasticities

that govern the wage effects of automation across firms: the impact of automation on the task share

of low-skill labor and capital. Indeed, according to equations (24) and (25), the elasticity of the

task share of low-skill workers can be estimated as:

∆ lnΓL(α1jt, α2jt) = −δ̂s − 1

η
· δ̂HL(29)

and the elasticity of the task share of capital can be estimated as:

(30) ∆ lnΓK(α1jt) =
1

η
· δ̂HK + ϕη(∆ lnHjt −∆ lnHj′t)− η

(
δ̂u + δ̂s

)
where δ̂s, δ̂HL, and δ̂HK are the estimated coefficients from regressions (26), (27), and (28), respec-

tively.

With values for parameters (ϕ, σ, η) governing, respectively, the elasticity of labor supply, the

elasticity of substitution across goods, and the elasticity of substitution across tasks, and with

firm-level cost-shares (sLj , sKj) of low-skill labor and capital, I can then obtain the wage effects of

automation at adopting and non-adopting firms using equations (16), (17) and (18).

Before going into the results, it is worth discussing the underlying assumptions for this exercise.

As discussed before, this exercise does not require random variation in the adoption of automating

machines. Even if there are various aggregate and firm-level shocks (like productivity or amenity

shocks coinciding with automation investments) that bias the estimate of automation’s impact on

the skill premium and the skill ratio, they operate in opposite directions and so can be cancelled

out. As a result, the sum of the skill premium and 1
η times the skill-ratio isolates the impact of

automation on the relative productivity of low-skill workers, ΓH(α2jt)
ΓL(α1jt,α2jt)

. Under the assumption
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that firms do not re-assign tasks between low- and high-skill workers, changes in the relative task-

share are driven by changes in the level of low-skill workers’ task-share, and so identify it. Similarly,

the change in the capital stock per high-skill employee, scaled by 1
η , identifies the change in the task-

share of capital ΓK(α1jt). These estimates, which measure changes in the task-shares of low-skill

workers and capital at automating firms, can also be linked to wage differentials between workers

at automating versus non-automating firms. Indeed, relative to their counterparts at non-adopting

firms, low-skill workers experience a negative displacement effect, measured by the reduction in

their task-share, but also a positive scale effect, which is given by the cost savings gains of a less

labor-intensive production process – measured, again, by the reduction in the task-share of low-

skill workers (scaled by their share in total costs) – net of the increase in costs associated with a

more capital-intensive production process – measured, again, by the increase in task-share of capital

(scaled by its share in total costs).

These results follow from the economic environment imposed in Section 2 – CES production

function, optimizing firm behavior and a specific wage setting protocol – and the assumption that
ψ′
H(α2ℓt)

ψH(α2ℓt)
− ψ′

L(α2ℓt)

ψL(α2ℓt)
→ ∞ for any ℓ. Importantly though, the validity of the exercise relies also

on applying the correct parameters (ϕ, σ, η). To this end, I set ϕ = 0.5, σ = 4.0 and η = 0.5. I

choose these values as the preferred ones for the following reasons: ϕ = 0.5 implies firm-specific labor

supply elasticity equal to two, which is consistent with recent quasi-experimental estimates from the

literature (Caldwell and Oehlsen, 2018; Cho, 2018; Kroft et al., 2025; Bassier et al., 2022); σ = 4.0

gives a markup of approximately 31% which is the midpoint across of the measurements in De Ridder

et al. (2022) which uses French data over the same time period as this paper; lastly, η = 0.5 is

the easlticity estimated by Humlum (2021), which is - to the best of my knowledge- the only paper

estimating the task-level elasticity of substitution in a task-based production technology. Regarding

the estimates of δs, δHL, and δHK , I use the coefficients from the most stringent specifications from

each regression (column 4 in Tables 4, 5, and 6). Lastly, average firm-level cost-shares (sLj , sKj) of

low-skill labor and capital at firms making an automation investment are resprectively 0.4 and 0.10.

More information about the computation of these cost-shares is provided in Appendix Section ??.

With these numbers at hand, I can now compute the average change in the task-share of low-

skill workers and capital induced by automation at automating firms, as well as the wage effects of

automation at adopting versus non-adopting firms. The average change in task-share of low-skill

workers induced by automation is −0.06 − 1
0.5 × 0.036 = −0.132 percent. Similarly, the average

change in task-share of capital induced by automation is 1
0.5 × 0.168 − 0.5 × (0.06) = 0.306.7 The

finding that at automating firms the task-share of low-skill workers decreases while the task-share
7The average change in task-share of low-skill workers and of capital induced by automation are based on equation

(29) and (30), respectively. The terms ∆lnHjt − ∆lnHj′t and δ̂u have been set to 0 as they are not statiscally

significant (see Tables C.2 and 6.1).
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of capital increases is reassuring as it aligns with the prediction of the model that automation

re-allocates tasks from low-skill workers to capital.

The reduction in the task-share of low-skill workers implies that on average automating firms

experience a reduction of 1
1−0.5 × [0.4× 0.132] = 0.106 in unit costs as a result of lower labor costs.

In turn, the increase in the task-share of capital implies that on average unit costs go up by around
1

1−0.5 × [0.1× 0.306] = 0.0612 as the firm uses capital more intensely. Hence, on average, investing

in automating machines generates cost-savings of around 4.5%.

Finally, I can compute the wage effects of automation at adopting versus non-adopting firms. For

low-skill workers, the average difference in wages between adopters and non-adopters is given by
0.25
1.25 × (−0.132) + 0.5×4

1.25 × 0.045 = 0.0456. In turn, for high-skill workers the average difference in

wages between adopters and non-adopters is given by 0.5×4
1.25 × 0.045 = 0.072. These results imply

that low-skill workers at automating firms experience a wage increase of around 5% relative to their

counterparts at non-automating firms, while high-skill workers at automating firms enjoy a wage

increase of around 7% relative to their counterparts at non-automating firms.

8 The Contribution of Automation to Wage Inequality

While the previous section established that automation generates wage disparities both within

and between skill groups, the economic significance of within-skill gaps depends critically on worker

mobility. If automating firms successfully recruit high-skill workers from competitors, or if displaced

low-skill workers transition out of manufacturing to avoid being displaced, the realized wage gaps

may be considerably smaller than the direct firm-level effects suggest. I therefore develop a variance

decomposition that quantifies automation’s contribution to overall wage inequality while explicitly

accounting for worker reallocation across firms.

In the presence of imperfect competition in the labor market, we have the following structure of

wages:

lnwit = αt + ψi + lnwSj(i,t) + εit,

where i denotes workers, j denotes firms, and εit is a mean zero error term. The ψi captures workers’

skills that are portable across firms, and therefore not affected by firm-level technological change

(at least in the short term). The term lnwSj(i,t) represents the skill-group (S) specific firm-level

wage premium of firm j. As discussed above, heterogeneous firm-level premiums can emerge as a

result of worker’s idiosyncratic preferences to work at a particular firm, union bargaining or labor

market power.

Applying the law of total variance, the overall dispersion of wages (net of time and worker fixed
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effects) can be decomposed into the contribution of skill heterogeneity and firm heterogeneity:

(31) Var(lnwit − αt − ψi) = Var
(
E[lnwSj(i,t) | S]

)︸ ︷︷ ︸
between-skill

+E
[
Var(lnwSj(i,t) | S)

]︸ ︷︷ ︸
between-firm within skill

+ Var(εit)︸ ︷︷ ︸
idiosyncratic

.

Moreover, the firm-level component can be further decomposed according to firms’ automation

status Ajt ∈ {0, 1}:

(32) E
[
Var(lnwSj(i,t) | S)

]
= E

[
Var
(
E[lnwSj(i,t) | S,A] | S

)]︸ ︷︷ ︸
between automation statuses within skill

+ E
[
E(Var(lnwSj(i,t) | S,A) | S)

]︸ ︷︷ ︸
between firms within (skill, automation)

.

Together, equations (31) and (32) provide a transparent decomposition of wage dispersion into

(i) differences between skill groups, (ii) differences between automating and non-automating firms

within each skill group, (iii) residual firm-level heterogeneity, and (iv) idiosyncratic variation.

To implement the variance decomposition empirically, one could proceed by linking each estimated

object directly to the terms in equations (31)–(32). The change in the average wage of high-

relative to low-skill workers identified in Section 7 corresponds to the between-skill component of

equation (31). It captures how automation alters wage differences across skill groups through the

scale and displacement effects in equations (12)–(13). Within each skill group, the estimated wage

differential between automating and non-automating firms corresponds to the between-firm within-

skill component of equation (32). This term measures how automation generates dispersion across

firms employing similar workers. Finally, any residual variation in wages among firms with the same

automation status represents the within-status firm heterogeneity term in (32), while the individual-

level residuals in the worker-level regression account for the idiosyncratic component of equation

(31). Together, these mappings allow the model-based estimates of automation’s wage effects to be

expressed as contributions to each source of overall wage inequality.

9 Conclusion

This paper examines how firm-level automation shapes wage inequality by developing a task-based

model where heterogeneous firms endogenously choose to replace low-skill workers with capital and

testing its predictions using French manufacturing data from 2003 to 2019. The key methodological

contribution is an identification strategy that exploits changes in relative prices and quantities of

capital and labor across firms to isolate automation’s causal impact from confounding productivity

shocks. By comparing relative wages and employment across automating and non-automating firms

using difference-in-differences regressions, I estimate that automation reduces the task-share of low-

skill workers by 4% and increases the task-share of capital by 6%. These estimates imply that both

high- and low-skill workers at automating firms gain 7% and 5% in wages respectively relative to
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their counterparts at non-automating firms, indicating that the productivity-enhancing scale effect

dominates the labor-displacing effect even for replaceable workers.

These findings reveal substantial between-firm wage differentials arising from automation. Work-

ers performing identical tasks experience substantially different wage trajectories depending on

whether their employer automates, with the magnitude of these gaps amplified by limited worker

mobility across firms. Finally I provide a framework combining the theoretical model, the identifi-

cation strategy, and the empirical estimates to decompose overall wage dispersion into between-firm

and between-skill components and quantify how much of each is explained by firm-level automa-

tion. From a policy perspective, these results suggest that interventions targeting the diffusion of

automation technologies across firms may be as important as traditional worker-focused policies

such as retraining programs in addressing automation-induced inequality.
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A Theoretical appendix

A.1 Equilibrium Definition

Definition A.1 (Small Open Economy Equilibrium). Given firm characteristics (zj , aHj , aLj), labor

and capital supplies (L̄, H̄), factor and task-specific productivities (ψL(x), ψH(x), ψK(x)), a world

interest rate r and preference parameter ϕ, an equilibrium consists of:

- prices ({pj , wLj , wHj}j ,ΛL,ΛH , ) and quantities ({yj , Lj , Hj ,Kj}j , Y ) for goods, low- and

high-skilled labor, capital, and aggregate output

- thresholds {αLj , αHj}j

such that:

1. Each worker supplies one unit of labor to the firm j that maximizes her indirect utility given

by equation (2)

2. The household demands the utility-maximizing quantity of goods j given by equation (1)

3. Each firm j chooses its output, price, input demands, and thresholds α1 and α2 to maximize

profits subject to the production technology (equation (8)), the demand for its variety (equation

(9)), and the supply of low- and high-skilled workers (equations (10) and (11))

4. Labor markets clear: ∑
j

Lj = L̄,
∑
j

Hj = H̄

5. The ideal-price index condition holds: 1 =
∑

j p
1−σ
j
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A.2 Firm problem for given cutoffs

The firm solves:

max
Ljt,Hjt,Kjt,pjt,yjt

pjtyjt − wLjtLjt − wHjtHjt − rKKjt

yjt = zjt

[
ΓK(α1jt)(AKtKjt)

η−1
η + ΓL(α1jt, α2jt)(ALtLjt)

η−1
η + ΓH(α2jt)(AHtHjt)

η−1
η

] η
η−1

pjt =

(
yjt
Yt

)− 1
σ

wLjt =

(
Ljt

L̄tΛLtaLjt

)ϕ
wHjt =

(
Hjt

H̄tΛHtaHjt

)ϕ
In the following I remove the t subscript to ease notation. The f.o.c for Lj is:

∂yj
∂Lj

pj + yj
∂pj
∂Lj

= wLj +
∂wLj
∂Lj

Lj

which using the demand and wage equations to compute ∂pj
∂Lj

and ∂wLj

∂Lj
becomes:

∂yj
∂Lj

pj + yj ·
(
− 1

σ

pj
yj

∂yj
∂Lj

)
= wLj(1 + ϕ)

Grouping terms it becomes:
∂yj
∂Lj

· σ − 1

σ
pj = wLj(1 + ϕ)

Expliciting out the marginal product of labor we get:

(33) z
η−1
η

j y
1
η

j Γ
L(α1j , α2j)L

− 1
η

j · σ − 1

σ
pj = wLj(1 + ϕ)

Lastly, we replace Lj using the labor supply equation to obtain:

(34) wLj =

(
1

1 + ϕ

) ϕη
ϕη+1

(
z

η−1
η

j y
1
η
j ΓL(α1j , α2j) (L̄ΛLaLj)

− 1
η σ−1

σ pj

) ϕη
ϕη+1

Similarly, the f.o.c. for Hj is:

(35) wHj =

(
1

1 + ϕ

) ϕη
ϕη+1

(
z

η−1
η

j y
1
η
j ΓH(α2j) (H̄ΛHaHj)

− 1
η σ−1

σ pj

) ϕη
ϕη+1

Lastly, the f.o.c. for Kj is:

(36) r = z
η−1
η

j y
1
η

j Γ
K(α1j)K

− 1
η

j · σ − 1

σ
pj
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A.3 Proof of Proposition 2.2

Consider equation (34). In equilibrium prices are given by pj =
(yj
Y

)− 1
σ P (equation (9)) and firm-

level output by yj =
(
µ·c(α1j ,α2j)

P

)−σ
Y . Replacing pj and yj with these expressions in (34), one

gets that the wages of low-skill workers at firm j can be expressed as:

wLj =

[
Bz

σ−1
η

j Y
1
ηµ

η−σ
η c(α1j , α2j)

η−σ
η ΓL(α1j , α2j)A

η−1
η

L (L̄ΛLaLj)
− 1

η

] ϕη
ϕη+1

where B = σ−1
σ(1+ϕ) .

Taking logs and totally differentiating one gets:

d lnwLj =
ϕη

ϕη + 1

[
σ − 1

η
d ln zj +

1

η
d lnY +

η − σ

η
d ln c(α1j , α2j) + d ln ΓL(α1j , α2j)+

η − 1

η
d ln zj −

1

η
d ln(L̄ΛL)−

1

η
d ln aLj

]

where8, under the assumption that ψ′
H(α2ℓt)

ψH(α2ℓt)
− ψ′

L(α2ℓt)

ψL(α2ℓt)
, we have that:

d ln c(α1j , α2j) =
∂ ln c(α1j , α2j)

∂α1j
dα1j

and:

d ln ΓL(α1j , α2j) =
∂ ln ΓL(α1j , α2j)

∂α1j
dα1j

The equilibirum wage change for low-skill workers at a firm j with dα1j > 0 relative to a firm j′

with dα1j′ = 0 is then:

d lnwLj − d lnwLj′ =
ϕη

ϕη + 1

[
σ − 1

η
(d ln zj − d ln zj′)+

η − σ

η

∂ ln c(α1j , α2j)

∂α1j
dα1j +

∂ ln ΓL(α1j , α2j)

∂α1j
dα1j−

1

η
(d ln aLj − d ln aLj′)

]

As it can be seen from the above expression, the wage effect of automation at firm j relative to

firm j′ can be decomposed into three components: the effect of changes in relative productivities,

represented by the first term in the bracket, the effect of automation at firm j, represented by the

second in the bracket, and lastly the effect of changes in relative amenities. The first and third
8In equilibrium, wLj and wHj change, affecting the unit cost c(α1j , α2j). However, this effect is second-order since

wages are set by firms exactly to minimize unit costs,and so the first-order impact of wage changes on unit costs is

zero by an application oif the envelope theorem. This is I consider only the effect of changes in α1j and α2j when

totally differentiating c(α1j , α2j).
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effects are changes to model primitives and so are not driven by dα1j . Hence, the wage effect of

automation at firm j relative to firm j′ is given by:

d lnwLj − d lnwLj′ =
ϕη

ϕη + 1

[
η − σ

η

∂ ln c(α1j , α2j)

∂α1j
dα1j +

∂ ln ΓL(α1j , α2j)

∂α1j
dα1j

]
Rearranging terms, one obtains the expression in Proposition 2.2.

For high-skill workers, the proof is analogous starting from equation (35).

Lastly I show how to obtain equation (18) which measures the per-unit cost savings from au-

tomation. Firstly, note that the share of low-skilled labor in total costs (net of automation costs)

at firm j can be obtained as:

sLj =
wLjLj

yjc(α1j , α2j)/zj
=

wLj
yjc(α1j , α2j)/zj

· ∂yj · c(α1j , α2j)/zj
∂wLj

where the second equality comes from Shepard’s lemma. Hence:

sLj = (wLj(1 + ϕ))1−ηΓL(α1j , α2j)/c(α1j , α2j)
1−η

Similarly, the share of labor in total costs (net of automation costs) at firm j is:

sKj = r1−ηΓK(α1j)/c(α1j , α2j)
1−η

Now, note that the per-unit cost savings can be obtained using (12) as:

∂ ln c(α1j , α2j)

∂α1j
=

1

1− η
·
r1−ηΓK(α1j)

∂ ln ΓK(α1j)
∂α1j

+ (wLj(1 + ϕ))1−ηΓL(α1j , α2j)
∂ ln ΓL(α1j ,α2j)

∂α1j

c(α1j , α2j)1−η

which, given the expressions for the labor and capital costs shares just obtained, becomes:

∂ ln c(α1j , α2j)

∂α1j
=

1

1− η
·
(
sKj · ∂ ln Γ

K(α1j)

∂α1j
+ sLj · ∂ ln Γ

L(α1j , α2j)

∂α1j

)
Note that in equilibrium it has to be that ∂ ln c(α1j ,α2j)

∂α1j
< 0, meaning that automation reduced unit

costs, otherwise firms would not increase their automation level α1j .

A.4 Proof of Proposition 3.1

Hence the skill-premium is:

(37)
wHj
wLj

=

(
ΓH(α2j , 1)

ΓL(α1j , α2j)

) ηϕ
1+ηϕ

(
H̄ΛHaHj
L̄ΛLaLj

)− ϕ
1+ηϕ

We can express the skill-ratio, using equation (33) and its counterpart for high-skilled workers, as:

(38)
(
Hj

Lj

)− 1
η ΓH(α2j , 1)

ΓL(α1j , α2j)
=
wHj
wLj
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and replacing the right-hand side with (37) we get:

(39)
Hj

Lj
=

(
ΓH(α2j , 1)

ΓL(α1j , α2j)

) η
1+ηϕ

(
H̄ ΛH aHj
L̄ΛL aLj

) ηϕ
1+ηϕ

Lastly, rearranging (38) one can obtain:

ΓH(α2j)

ΓL(α1j , α2j)
=
wHj
wLj

(
Hj

Lj

) 1
η

Notice that for two firms j and j′ with identical changes in α2jt across two periods (∆α2jt = ∆α2j′t),

but only j automates additional tasks (i.e. ∆α1jt > 0 and ∆α1j′t = 0), the log-change in the skill

premium and in the skill ratio behave as:

∆ ln
wHjt
wLjt

−∆ ln
wHj′t
wLj′t

= − ηϕ

1 + ηϕ
∆ lnΓL(α1jt, α2jt)−

ϕ

1 + ηϕ

(
∆ ln

aHjt
aLjt

−∆ ln
aHj′t
aLj′t

)

∆ ln
Hjt

Ljt
−∆ ln

Hj′t

Lj′t
= − η

1 + ηϕ
∆ lnΓL(α1jt, α2jt) +

ηϕ

1 + ηϕ

(
∆ ln

aHjt
aLjt

−∆ ln
aHj′t
aLj′t

)
where ∆ lnΓL(α1jt, α2jt) =

∂ ln ΓL(α1jt,α2jt)
∂α1jt

∆α1jt.

Hence, combining the two above equations one obtains the semi-elasticity of the task-share of

low-skill labor as:

−∆ lnΓL(α1jt, α2jt) =

(
∆ ln

wHjt
wLjt

−∆ ln
wHj′t
wLj′t

)
+

1

η

(
∆ ln

Hjt

Ljt
−∆ ln

Hj′t

Lj′t

)
To obtain the semi-elasticity of the task-share of capital, divide capital demand from the firm’s

f.o.c.:

Kjt = zη−1
jt yjtΓ

K(α1jt)
η

(
σ − 1

σ

)η
(pjt)

ηr−ηt

by the demand for high-skill workers:

Hjt = zη−1
jt yjtΓ

H(α2jt)
η

(
σ − 1

σ

)η
(pjt)

η(wHjt(1 + ϕ))−η

which gives:
Kjt

Hjt
=

(
ΓK(α1jt)

ΓH(α2jt)

)η (
rt

wHjt(1 + ϕ)

)−η

Replacing high-skill wages with (11):

Kjt

H1+ϕη
jt

=

(
ΓK(α1jt)

ΓH(α2jt)

)η (
rt

1 + ϕ

)−η ( 1

H̄tΛHtaHjt

)ϕη
Comparing first-differences of ln Kjt

H1+ϕη
jt

across two firms j and j′ with j automating additional tasks

while j′ keeping a constant automation level, one obtains:

∆ ln
Kjt

H1+ϕη
jt

−∆ ln
Kj′t

H1+ϕη
j′t

=η

(
∆ ln

ΓK(α1jt)

ΓH(α2jt)
−∆ ln

ΓK(α1j′t)

ΓH(α2j′t)

)
− ϕη

(
∆ ln aHjt −∆ ln aHj′t

)
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which, under the assumption that ψ′
H(α2ℓt)

ψH(α2ℓt)
− ψ′

L(α2ℓt)

ψL(α2ℓt)
→ ∞, becomes:

∆ ln
Kjt

H1+ϕη
jt

−∆ ln
Kj′t

H1+ϕη
j′t

= η∆ lnΓK(α1jt)− ϕη
(
∆ ln aHjt −∆ ln aHj′t

)
Notice that ln

Kjt

Hjt
can be rewritten as:

ln
Kjt

H 1+ϕη
jt

= ln
Kjt

Hjt
− ϕη ln H̃t + εjt

where H̃t = exp
{

1
Jt

∑Jt
j=1 lnHjt

}
, and εjt = −ϕη

[
lnHjt − 1

Jt

∑Jt
i=1 lnHit

]
. Hence, the above

expression can be written as:

∆ ln
Kjt

Hjt
−∆ ln

Kj′t

Hj′t
= η∆ lnΓK(α1jt)− ϕη

(
∆ ln aHjt −∆ ln aHj′t

)
+
(
∆εj′t −∆εjt

)
Taking averages across j and j′:

∆ ln
Kjt

Hjt
−∆ ln

Kj′t

Hj′t
= η∆ lnΓK(α1jt)− ϕη(∆ ln aHjt −∆ ln aHj′t)

because the cross-sectional mean of the approximation error ϵjt is exactly zero, by construction.

Hence, the change in the task-share of capital induced by automation can be identified as:

∆ lnΓK(α1jt) =
1

η

(
∆ ln

Kjt

Hjt
−∆ ln

Kj′t

Hj′t

)
+ ϕη(∆ ln aHjt −∆ ln aHj′t)

Lastly, to isolate the effect of automation from changes in amenities, notice that by exploiting the

labor supply equation for high-skill workers (equation (11)) one can recover changes in supply-side

factors as:

∆ lnHjt − 1
ϕ ∆ lnwHjt = ∆ ln H̄t +∆ lnΛH,t +∆ ln aHjt.

and so one can measure the automation effect on the task-share of capital net of shocks to firm-

specific amenities computing:

∆ lnΓK(α1jt) =
1

η

(
∆ ln

Kjt

Hjt
−∆ ln

Kj′t

Hj′t

)
+ ϕη

[
∆ lnHjt −∆ lnHj′t − 1

ϕ

(
∆ lnwHjt −∆ lnwHj′t

)]

A.5 Proof of Proposition 2.1

Re-arrange the first-order condition for the automation level (equation (13)) as:[
(wLj(1 + ϕ))1−η − r1−η

]
· c(α1j , α2j)

η · yj
zj

= b · 1− η

η

The variables that potentially depend on zj in this expression are only those indexed by j, which

are wLj , α2j , yj , and zj itself.
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Note that, although it is true that we should consider wHj as well as it enters c(α1j , α2j), an

application of the envelope theorem shows that any change in wHj has no first-order effect as in

my setting firms choose the wages they pay. By the same argument, I can ignore the effect of zj
through α2j on c(α1j , α2j) as well. Then, I first show that yj

zj
is increasing in zj , and later that the

per unit cost-savings from automation are also increasing in zj . Together, these two results imply

that the left-hand side of the first-order condition for α1j is increasing in zj , which implies that the

optimal automation level α∗
1j is increasing in zj .

Firstly, in any CES demand system where σ > 1 – as it is the case in my setting – the term yj
zj

is

increasing in zj . Indeed:
yj
zj

= Y · (µ · c(α1j , α2j))
−σ · zσ−1

j

Secondly, the wages of low-skill workers wLj are increasing in zj . This can be seen from the

equilibrium expression for the wage of low-skill workers:

wLj =

(
σ − 1

σ(1 + ϕ)

) ϕη
ϕη+1

z σ−1
σ

j

(
yj
zj

)σ−η
ση

ΓL(α1j , α2j) (L̄ΛLaLj)
− 1
η Y

1
σ


ϕη

ϕη+1

The only two terms that depend directly on zj are z
σ−1
σ

j – which is increasing in zj – and
(
yj
zj

)σ−η
ση

– which is also increasing in zj – since σ > η. This is intuitive: the marginal product of low-skill

workers increases as the total-factor productivity of the firm, zj , goes up.

Optimal automation decision

From standard optimization arguments we know that the Lagrange multiplier of the production

technology in the cost minimization problem gives the marginal cost. In addition, when the tech-

nology is constant-returns-to-scale, this is identical to the unit cost. Hence, to obtain the unit cost

of production for given (α1j , α2j) I solve for λ in the following Lagrangean:

L(Kj , Lj , Hj) =wLjLj + wHjHj + rKj +

λ
{
yj − zj

[
ΓK(α1j)

1
ηK

η−1
η

j + ΓL(α1j , α2j)
1
ηL

η−1
η

j + ΓH(α2j)
1
ηH

η−1
η

j

] η
η−1 }

+

ψ
{
wLj −

(
Lj

L̄ΛLaLj

)ϕ }
+

µ
{
wHj −

(
Hj

H̄ΛHaHj

)ϕ }
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The f.o.c. are:

K : r = λz
η−1
η

j y
1
η

j ΓK(α1j)
1
ηK

− 1
η

j

L : wLj = λz
η−1
η

j y
1
η

j ΓL(α1j , α2j)
1
ηL

− 1
η

j + ψ · ϕ
(

Lj
L̄ΛLaLj

)ϕ−1 1

L̄ΛLaLj

H : wHj = λz
η−1
η

j y
1
η

j ΓH(α2j)
1
ηH

− 1
η

j + µ · ϕ
(

Hj

H̄ΛHaHj

)ϕ−1 1

H̄ΛHaHj

Deriving the Lagrangean with respect to wLj and wHj we obtain the multipliers ψ and µ as:

wL : ψ = −Lj

wH : µ = −Hj

Using these expressions for ψ and µ in the f.o.c. for L and H we get:

L : wLj = λz
η−1
η

j y
1
η

j ΓL(α1j , α2j)
1
ηL

− 1
η

j − ϕwLj

H : wHj = λz
η−1
η

j y
1
η

j ΓH(α2j)
1
ηH

− 1
η

j − ϕwHj

which becomes:

L : wLj(1 + ϕ) = λz
η−1
η

j y
1
η

j ΓL(α1j , α2j)
1
ηL

− 1
η

j

H : wHj(1 + ϕ) = λz
η−1
η

j y
1
η

j ΓH(α2j)
1
ηH

− 1
η

j

I rewrite the f.o.c. to isolate Kj , Lj and Hj :

K : Kj =

 r

λz
η−1
η

j y
1
η

j ΓK(α1j)
1
η


−η

L : Lj =

 wLj(1 + ϕ)

λz
η−1
η

j y
1
η

j ΓL(α1j , α2j)
1
η


−η

H : Hj =

 wHj(1 + ϕ)

λz
η−1
η

j y
1
η

j ΓH(α2j)
1
η


−η

Replace these equations into the production technology:

yj =zj λ
η zη−1

j yj ·[
r1−ηΓK(α1j) + (wLj(1 + ϕ))1−ηΓL(α1j , α2j) + (wHj(1 + ϕ))1−ηΓH(α2j)

] η
η−1

which gives λ as:

λ =
1

zj

[
r1−ηΓK(α1j) + (wLj(1 + ϕ))1−ηΓL(α1j , α2j) + (wHj(1 + ϕ))1−ηΓH(α2j)

] 1
1−η
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Denote the term in curly brackets as c(α1j). This is the unit cost of a firm with productivity

zj = 1. Hence the unit cost of a firm with productivity zj for given (α1j , α2j) is:

c(α1j , α2j , z) =
c(α1j , α2j)

zj

where

c(α1j , α2j) =
[
r1−ηΓK(α1j) + (wLj(1 + ϕ))1−ηΓL(α1j , α2j) + (wHj(1 + ϕ))1−ηΓH(α2j)

] 1
1−η

A.6 Proof of Proposition 3.1

I first introduce a useful lemma and then proceed with the proof of Proposition 3.1.

Lemma A.1. Let α⋆2ℓt ∈ (0, 1) be the solution to (??) for firm ℓ at time t, i.e. it satisfies (in logs):

lnψH(α
⋆
2ℓt)− lnψL(α

⋆
2ℓt) = ln

wHℓt
wLℓt

− ln
AHt
ALt

Suppose that across two dates t − 1 and t we have a bounded change in the right-hand side, and

assume that the steepness of the productivity of high-skill labor relative to low-skill labor, at the

solution, satisfies
ψ′
H(α2ℓt)

ψH(α2ℓt)
−

ψ′
L(α2ℓt)

ψL(α2ℓt)

∣∣∣∣
α2ℓt=α

⋆
2ℓt

−→ +∞.

Then

∆α2ℓt ≡ α2ℓt − α2ℓ,t−1 −→ 0

Proof. Define g(α2) = lnψH(α2) − lnψL(α2), and m ≡ ln wH
wL

− ln AH
AL

. Also define F (α2,m) =

g(α2)−m. By the Implicit Function Theorem, for interior solutions with g′(α2) ̸= 0 there exists a

(local) function α2 = α2(m) with
∂α2

∂m
=

1

g′(α2)
.

Take a change from t−1 to t and apply the mean value theorem to the composite map m 7→ α2(m):

∆α2ℓt = α2(mt)− α2(mt−1) =
∂α2

∂m

∣∣∣∣
m=m̃

∆mt =
1

g′(α̃2ℓt)
∆mt

for some m̃ between mt−1 and mt, and α̃2ℓt on the segment between α2ℓ,t−1 and α2ℓt. By hypothesis,

∆mt is bounded and g′(α̃2ℓt) → +∞ (since g′ is continuous and g′(α2ℓt) → +∞). Hence:

∆α2ℓt =
∆mt

g′(α̃2ℓt)
−→ 0.

Proof of Proposition 3.1. From equation (22), the change in the skill-ratio at a firm j′ with

constant automation level is:

∆ ln
wHjt
wLjt

=
ηϕ

1 + ηϕ
∆ lnΓH(α2jt)−

ϕ

1 + ηϕ
∆ ln

HtΛHt
LtΛLt

− ϕ

1 + ηϕ
∆ ln

aHjt
aLjt
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Then, subtracting this expression from the analogous one for a firm j that increases its automation

level by dα1jt gives:

∆ ln
wHjt
wLjt

−∆ ln
wHj′t
wLj′t

=
ηϕ

1 + ηϕ

(
∆ lnΓL(α1jt, α2jt)−∆ lnΓL(α1j′t, α2j′t)

)
+

ηϕ

1 + ηϕ

(
∆ lnΓH(α2jt)−∆ lnΓH(α2j′t)

)
+

ϕ

1 + ηϕ

(
∆ ln

aHjt
aLjt

−∆ ln
aHj′t
aLj′t

)
which can be expanded into:

∆ ln
wHjt
wLjt

−∆ ln
wHj′t
wLj′t

=
ηϕ

1 + ηϕ

(
∂ ln ΓL(α1jt, α2jt)

∂α1jt
∆α1jt+

∂ ln ΓL(α1jt, α2jt)

∂α2jt
∆α2jt −

∂ ln ΓL(α1j′t, α2j′t)

∂α2j′t
∆α2j′t

)
+

ηϕ

1 + ηϕ

(
∆ lnΓH(α2jt)−∆ lnΓH(α2j′t)

)
+

ϕ

1 + ηϕ

(
∆ ln

aHjt
aLjt

−∆ ln
aHj′t
aLj′t

)
Because of the assumption that ψ′

L(α2ℓt)

ψL(α2ℓt)
− ψ′

H(α2ℓt)

ψH(α2ℓt)
→ −∞ for any ℓ, ∆α2ℓt → 0, as shown by Lemma

A.1. Hence we have that:

∆ ln
wHjt
wLjt

−∆ ln
wHj′t
wLj′t

=
ηϕ

1 + ηϕ

∂ ln ΓL(α1jt, α2jt)

∂α1jt
∆α1jt +

ϕ

1 + ηϕ

(
∆ ln

aHjt
aLjt

−∆ ln
aHj′t
aLj′t

)
Applying the same steps to equation (23) gives:

∆ ln
Hjt

Ljt
−∆ ln

Hj′t

Lj′t
=

η

1 + ηϕ

∂ ln ΓL(α1jt, α2jt)

∂α1jt
∆α1jt +

ηϕ

1 + ηϕ

(
∆ ln

aHjt
aLjt

−∆ ln
aHj′t
aLj′t

)
Finally, computing:

∆ ln
wHjt
wLjt

−∆ ln
wHj′t
wLj′t

+
1

η

(
∆ ln

Hjt

Ljt
−∆ ln

Hj′t

Lj′t

)
gives equation (24).

Following an analogous procedure as the one above, one gets equation (25).

Wage effects on low- vs high-skill workers

Starting from:

wLj =

(
1

1 + ϕ

) ϕη
ϕη+1

(
z

η−1
η

j y
1
η
j ΓL(α1j , α2j)A

η−1
η

L (L̄tΛLtaLjt)
− 1
η σ−1

σ pj

) ϕη
ϕη+1

.
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and compute the log-change of wLj induced by a marginal increase in α1j , for fixed aggregate

variables P, Y,ΛL,ΛH . This gives the effect of automation, if all other firms did not change their

automation level, and so the price index is not affected. This is a partial equilibrium effect. The

log-change in wLj is:

(40) d lnwLj =
ϕη

ϕη + 1

(
1

η
d ln yj +

∂ ln ΓL(α1j , α2j)

∂α1j
dα1j + d ln pj

)
which using equation (9) becomes:

d lnwLj =
ϕη

ϕη + 1

σ − η

ση
d ln yj +

1

σ
d lnY︸ ︷︷ ︸

Scale Effect

− ψL(α1j)
η−1

ΓL(α1j , α2j)
dα1j︸ ︷︷ ︸

Displacement Effect


Alternatively, equation (40) can be rewritten using equation (1) as:

d lnwLj =
ϕη

ϕη + 1

−
(
σ

η
− 1

)
d ln pj +

σ

η
d lnP +

1

η
d lnY︸ ︷︷ ︸

Scale Effect

− ψL(α1j)
η−1

ΓL(α1j , α2j)
dα1j︸ ︷︷ ︸

Displacement Effect


which using pj = σ−1

σ c(α1j , α2j , zj) becomes:

d ln yj = −
(
σ

η
− 1

)
d ln c(α1j , α2j) +

σ

η
d lnP +

1

η
d lnY

where d ln pj = d ln c(α1j , α2j). This equation emphasizes the role of the cost-savings from automa-

tion in generating the scale effect.
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B Data appendix

B.1 Survey Data Descriptive Statistics

There are 177 firms × 5 years = 885 observations. I remove 9 firms for which there is no information

in FARE 9, 12 firms for which there is missing information in some years (they were born after 2011

or simply information is missing for some years) and 1 firm which has the legal form of "agricultural

cooperative".

Table 4: Descriptive statistics

N-by-year N N Eligible
N invest

at least once

N never invested
pre-2011
(eligible)

N never invested
pre-2011

(non-eligible)

710 142 95 106 3 2

The resulting dataset contains 155 firms × 5 years = 775 observations, out of which 13 firms (65

observations) are non-manufacturing firms. The main dataset throughout the paper is the one with

manufacturing firms only. Here the main descriptive statistics:

Robot Investment Magnitudes. Table 5 provides descriptive statistics comparing robot pur-

chases to total investment in industrial equipment and tools. Robot investments represent a mean-

ingful but modest share of firms’ overall capital stock. Among firms making positive investments,

robots account for an average of 191,000 euros compared to 839,000 euros for all industrial equip-

ment and tools. The contribution of robots to the total stock of industrial equipment and tools

averages 11 percent, with a median of 2.5 percent, indicating substantial heterogeneity in automa-

tion intensity across firms.

Table 5: Descriptive Statistics by Investment Item
Industrial robots Industrial equipment and tools

Total (1,000 €) 38,325 573,055

Mean (conditional on positive inv.) 191 839

Median (conditional on positive inv.) 118 195

Firm Characteristics by Policy Eligibility. Tables 6 and 7 compare eligible and non-eligible
9After checking on the online Sirene databse, some of these firms do not exist (firms with siren: 378877000,

529496106, 488134059) while others do exist. Among these ones, some are in the public sector (130017627, 130017684)

while others in the private one (662750074, 488328261, 344954896). I was not able to understand why they’re not in

FARE.
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firms across various dimensions in 2013, the year before policy implementation. As expected given

the SME eligibility criteria, eligible firms are substantially smaller across all measures: they average

57 employees compared to 281 for non-eligible firms, and have sales of 1.1 million euros compared to

67.9 million euros for non-eligible firms. Despite these size differences, eligible firms show comparable

productivity levels, with value added per worker of 61,133 euros compared to 70,860 euros for non-

eligible firms.

Table 6: Firm Characteristics by Eligibility Status in 2013
Non-eligible Eligible

Age 33.7 26.5

Sales 67,864,349 1,130,131

Assets 76,733,863 1,072,635

Employment 281.0 57.4

Materials 26,663,876 488,507

Industrial equipment (stock) 25,552,010 2,903,369

Other inputs 19,519,915 2,823,320

Profits 2,137,103 313,450

Value added 19,191,821 328,710

Value added per worker 70,860 61,133

Financial characteristics and international exposure also differ systematically between eligible

and non-eligible firms. Eligible firms have lower absolute levels of debt and equity financing but

similar leverage ratios when scaled by firm size. Non-eligible firms show greater integration with

international markets, with higher rates of both importing and exporting activities.

Table 7: Financial Characteristics and International Exposure in 2013
Financial characteristics

Non-eligible Eligible

Loans (bank) 410,660 357,561

Loans (other) 5,157,983 1,713,005

Cash 4,517,853 602,805

Equity 20,139,506 2,932,812

International market exposure

Importers (extra UE) 0.872 0.442

Importers (intra UE) 0.915 0.421

Exporters (total) 0.915 0.789
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Sectoral Distribution Figure 1 shows the distribution of firms across sectors in the survey data.

The sample is concentrated in traditional manufacturing industries, with the largest representation

in fabricated metal products and machinery, followed by rubber and plastic products. This sectoral

distribution aligns with expectations about which industries are most likely to adopt industrial

robots.

Figure 1: Number of Firms by Sector

B.2 Customs Data Descriptive Statistics

Table 8 presents descriptive statistics for robot purchases identified in the customs data. The

firm-level data covers 1,050 unique firms over 2,180 firm-year observations, with robot purchases

averaging 235,595 euros. The plant-level data provides a more granular view with 558 plants and

946 plant-year observations. Both datasets show substantial variation in investment magnitudes,

ranging from small purchases of around 30 euros to large investments exceeding 6-13 million euros,

reflecting the heterogeneous nature of automation adoption across firms and establishments.
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Table 8: Descriptive Statistics of Robot Purchases from Customs Data

N N-by-year Mean Min p25 p50 p75 Max

Firm-level 1,050 2,180 235,595 32 9,200 58,737 220,694 13,554,303

Plant-level 558 946 203,228 33 8,038 50,322 216,044 6,139,027

Note: All monetary values are in euros.

Sectoral Distribution of Robot Imports. Figure 2 displays the cumulative robot imports

between 1997 and 2021 by manufacturing industry, based on the customs data. The automotive

sector dominates robot adoption, accounting for the largest share of total robot imports, followed

by machinery and equipment manufacturing. This pattern reflects the historical development of

industrial robotics, which first gained widespread adoption in automotive assembly lines before

diffusing to other manufacturing sectors.
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Figure 2: Cumulative Robot Imports between 1997 and 2021 by Manufacturing Industry

50



C Robustness checks

C.1 Effect of automation on the skill ratio - 6 year difference

Table 9: Automation effect on the skill-ratio

(1) (2) (3)

Automation 0.032∗∗ 0.037∗∗ 0.022

(0.014) (0.021) (0.021)

vadl_delta6 -0.028∗∗∗ -0.0285∗∗∗

(0.008) (0.008)

Industry × Year FEs Yes Yes Yes

Dependent variable t− 1 No No Yes

Firms N. 3612 3612 3612

Observations 39,659 17,767 17,763

R2 0.03468 0.05779 0.09816

Note: Significance levels: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10. Standard errors in parentheses.

C.2 Effect of automation on the employment of high-skill workers

Table 10: Automation effect on the employment of high-skill workers

3-Years Diff. 6-Years Diff.

(1) (2)

Automation 0.012 -0.061

(0.065) (0.070)

∆ Log VA 0.339∗∗∗ 0.442∗∗∗

(0.032) (0.034)

Industry × Year FEs Yes Yes

Dependent variable t− 1 Yes Yes

Firms N. 3612 3612

Observations 13,591 7,976

R2 0.56603 0.58312

Note: Significance levels: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10. Standard errors in parentheses.
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C.3 Effect of automation on capital stock per high-skill worker - 6 year differ-
ence

Table 11: Automation effect on capital stock per high-skill worker

(1) (2) (3)

Automation 0.304∗∗∗ 0.314∗∗∗ 0.265∗∗∗

(0.083) (0.083) (0.081)

Industry × Year FEs Yes Yes Yes

Dependent variable t− 1 No No Yes

Firms N. 3612 3612 3612

Observations 31,876 31,491 31,272

R2 0.08635 0.08829 0.15526

Note: Significance levels: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10. Standard errors in parentheses.
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